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ABSTRACT

Wei, Zhaohui, M. S. M. E., University of South Alabama, December, 1997. Numerical 
Simulation of Laser Ablation in Pulsed Laser Deposition Process. Chair o f  Committee:
Dr. Jayanta S. Kapat

A computational model has been developed in order to simulate heat transfer with phase 

transition in laser ablation o f Pulsed Laser Deposition (PLD) Process with or without the 

kinetics condition. Front fixing method with Landau transformation has been used to 

represent the geometric domain. Spectral collocation method has been utilized for spatial 

discretization in this model, while backward differentiation techniques have been used for 

temporal discretization.

The computational model has been applied to the problem o f laser melting of a pure iron 

sheet with a medium power laser. In order to understand the importance o f kinetics of 

melting, the problem has been solved with and without the kinetics condition at the 

moving interface, and the results have been compared. It shows that if kinetics condition is 

not used, the interface location is over predicted and the free interface temperature is 

under-predicted. Both o f these factors may have important consequences in the laser 

ablation of PLD process.
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1. INTRODUCTION

Pulsed Laser Deposition (PLD) plays a significant role in the processing o f advanced 

materials. For the case o f multi-elemental compounds such as high-temperature 

superconductors, ferroelectrics, electro-optic materials, this technique has been extremely 

successful in a short span o f time [Chrisey and Huber, 1994; Miller, 1994] [I, 2].

If  a mathematical model o f a physical process may be thought o f as a simulation o f this 

process by using mathematical tools, then, in the same spirit, a laboratory-scale experiment 

o f an industrial process is an imitation o f the process by the means and capabilities o f the 

laboratory, and a numerical simulation is an imitation o f the process by the means and 

capabilities o f the computer [Alexiades and Solomon, 1993]. Because of the importance 

and industrial viability o f the PLD technique, a computational model to predict the 

physical processes that take place during PLD will provide a cost-effective and time- 

efficient tool for design optimization, and will help to limit the use o f the expensive and 

time-consuming experimental tests to the last stages o f design verification [3].

Currently, efforts are being made through this research work to incorporate the effect of 

kinetics o f phase transitions and other non-equilibrium phenomena into a computational 

model for laser ablation in PLD process [4]. A mathematical model to include kinetics o f 

melting in laser ablation has been considered m this thesis. A numerical model has been 

developed and results for a  simple test case have been presented. For comparison, results 

from numerical simulations based on Stefan condition where the kinetics o f melting is 

ignored are also presented.

i
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2. BACKGROUND

Laser source

Target Plume Substrate Vacuum 
pump

Reactive gas

Figure 1

Schematic o f Pulsed Laser Deposition Process

2.1. PLD Process

PLD is a technique for thin film deposition, which can be described as a  three-step process 

[5]: (0 vaporization o f a target material under laser irradiation; (if) transport o f the vapor 

plume; (iii) film growth on a substrate. Figure 1 shows a  schematic diagram o f an 

experimental setup, which consists o f a target holder and a  substrate holder housed in a 

vacuum chamber. A high-power laser that is used as an external energy source is irradiated

2
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on the target surface to vaporize materials and to produce a plume. This plume impinges 

onto the substrate surface and deposits a thin film with the same stoichiometry as the 

target. A  set o f optical components is used to focus and raster the laser beam over the 

target surface. This method is easily adaptable to different operational modes because of 

decoupling o f the vacuum hardware and the evaporation power source (Le. the laser). 

Film growth can be carried out in a reactive environment containing one or more gases. It 

can also be operated in conjunction with other types o f evaporation sources in a hybrid 

approach [1 ,2 , 5, and 6].

Reactive gas flow 
(introduced from 

outside]_

Chemical reactions 
transport, fluid 

mechanics

Laser plasma 
interaction

Laser ablation 

Stefan Problem

Optically thin region

JJ-LLL
Dense plasma region

Molten Region

Solid

Substrate
Film

Plasma
flow

Incident
Laser

Target

Figure 2

Simplified One-Dimensional Model o f PLD Process

The first PLD experiment was carried out in 1965 by Smith and Turner. A ruby laser was 

used to deposit thin films on different substrates. The advantages o f the PLD technique 

stem from the fact that the dislodgment o f atoms from a source is accomplished by 

depositing energy at the target surface via a laser pulse that is a source o f  “pure” energy in 

the form o f  monochromatic and coherent photons. Unlike ions or electrons, laser beams 

are much easier to transport and manipulate, and since laser interaction, with gas-phase

3
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species is relatively weak, the dynamic range o f deposition pressure is the largest 

compared to any deposition processes. Furthermore, at wavelengths o f250 nm and below, 

all materials absorb the laser beam either via linear or nonlinear processes whereby 

coupling o f energy is possible to most surfaces, making the process very adaptable. The 

capability o f the technique to reproduce the target composition in the deposited film with 

relative ease under the appropriate conditions, is one of the key features. Deposition of 

multi-layers involves sequential ablation o f multiple targets with a  laser beam in a 

relatively straightforward operation, is another key feature o f the technique. Since any 

materials can be ablated with an appropriate laser, this technique is not as much affected 

by the properties o f the target as the other techniques. The process is so different in many 

ways from conventional deposition processes that it will take many years to folly realize 

and utilize all the unique features o f PLD. The past research in PLD indicates a 

breathtaking scenario for this technology in the future [2 ,6 ,7 , and 8].

2.2. Laser-Solid Interaction

The problem o f laser-target interaction was studied long before the first PLD experiment. 

In contrast to the simplicity o f the hardware o f PLD, the laser-solid interaction is a very 

complex physical phenomenon. Theoretical descriptions are multidisciplinary and combine 

both equilibrium and non-equilibrium processes. The effect o f electromagnetic energy of 

laser pulses irradiating a  solid surface, if sufficiently intense, is to cause evaporation, 

ablation, excitation, plasma formation, and exfoliation. Electromagnetic energy is 

converted to electronic, thermal, chemical, and mechanical energy at the solid surface [2,

6J.

The ablation threshold o f a solid at a  certain wavelength is determined by the amount of 

laser power required to reach a surface temperature that gives rise to significant ablation 

or material removal Ablated material forms a  “plume” consisting o f a mixture o f energetic 

species including atoms, molecules, electrons, ions, clusters, micron-sized solid

4
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particulate, and molten globules. The mean free path inside the dense plume is very short. 

As a result, immediately after the laser irradiation, the plume rapidly expands into the 

background environment (which can be vacuum or may contain some reactive gases) from 

the target surface. Gasdynamic flow characteristics o f the expanding plume are similar to 

those o f an expanding nozzle jet. During a PLD process, the spatial distribution o f the 

plume is influenced by target topography, target-substrate distance, laser spot dimensions, 

ambient gas, gravity, film, and plume composition [2, 6, and 7]. The plume propagation 

also involves complex gasdynamic interactions such as plume splitting [Geohegan, 1997].

Mechanisms that lead to material ablation depend on laser characteristics, as well as the 

optical, topological, and thermodynamical properties o f the target. When a laser beam 

irradiates on a target surface that is metallic, the incident energy is absorbed primarily by 

free electrons [Bloembergen] [39]. The absorbed energy propagates through media by free 

electron motion, as well as is converted to lattice vibration (or phonon) energy through 

electrons-lattice energy collisions. During high-power laser irradiation, the solid can be 

regarded as a two-temperature system, where the free electrons are heated to an effective 

temperature much higher than that o f the lattice (or phonon). Thus, large local 

temperature differences arise between the electrons and lattice. Subsequently, exchange of 

energy from the electrons to the lattice takes place by means o f a relaxation mechanism, 

and a heat transfer coupling coefficient between electron and phonon subsystems is 

considered [2, 6, and 7]. In semiconductors and dielectrics, the absorbed energy leads to 

the formation o f electron-hole pairs and can be represented by a similar model For 

polymers, however, a very different phenomenological model has to be considered, and 

the discussion presented in this thesis is not appropriate for those materials [Srinivasan and 

Miller, 1994].

The laser-solid interaction is relatively independent o f other system parameters such as 

background gas pressure or electrode assemblies, malring PLD one o f the most versatile 

techniques. The spatial confinement o f this interaction and the subsequent spatial

5
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confinement of the ablation plume make PLD an inherently clean process compared to 

sputtering methods where the plasma tends to come in contact with various surfaces inside 

the chamber, thereby contributing to the contaminants in the film. The background gas 

pressure, laser energy densities, and so on, are weU decoupled, giving the process a 

significant degree o f parameter freedom [2, 6]. However, PLD process suffers form a 

serious disadvantage, which is the film non-uniformity caused by the condensed matter 

droplets in the expanding plume (Chrisey and Hubler, 1994). These droplets are formed 

during the laser-solid interaction process, and hence further improvement o f PLD requires 

better understanding o f laser-target interaction. For clarity and convenience, a one

dimensional model, as shown in Figure 5, has been considered in this work.

23 . Moving Boundary Problems

Moving-boundary problems are typically called Stefan problems [3] in classical textbooks. 

When the boundary surface o f a solid target absorbs thermal energy by conduction, 

convection and/or radiation, the temperature o f target increases gradually. When the 

temperature o f the boundary surface receiving energy gets to the equilibrium melting 

temperature TE, the binding force that maintains its solid structure, namely latent heat L , 

is overcome by incoming energy, and the solid starts melting at the surface to become 

liquid. An interface between solid and liquid is formed and moves with time as energy is 

absorbed at the boundary surface, which is also referred to as the free surface.

2.3.1. An Overview of Phase-Change Problems

Both solid and liquid phases are characterized by the presence o f cohesive forces that keep 

atoms in close proximity. In a solid the molecules vibrate around fixed equilibrium 

positions, while in a liquid they may “skip” between these positions. Clearly atoms in the 

liquid phase are more energetic thanthose in the solid phase. Thus before a solid can be 

melted, it must acquire a certain amount o f energy to overcome the latent heat L that is

6
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the quantity o f energy transferred during the phase-change process. Of course, 

solidification o f liquid requires the removal o f this latent heat and the structuring o f atoms 

into more stable lattice positions [3].

The temperature at which melting occurs depends on the kinetics o f the heat removal 

process. I f  heat removal is done quite slowly compared to the time needed by the solid 

atoms to get energized and free themselves off the lattice structure, the melting process is 

called equilibrium (or more correctly, quasi-equilibrium) melting. The temperature at 

which a solid melts under equilibrium condition is a  property o f  the solid, and is called the 

equilibrium melting temperature, TE. In general, TE depends on pressure. Under fixed 

pressure, TE may be a fixed value characteristic o f the material, which is a function of 

other thermodynamic variables [3],

The interface between solid and liquid, where the two phases coexist has a thickness that 

may vary from a  few Angstroms to a few centimeters. Depending on several factors (the 

material itsel£ the rate o f cooling, the temperature gradient in the liquid, surface tension 

etc.), interfacial microstructure may be complex. For most pure materials, during freezing 

or melting under ordinary or equilibrium conditions, the interface appears to be (locally) 

planar, o f  negligible thickness, and at a  fixed temperature TE. In these cases, the interface 

may be thought o f as a “ sharp front ” separating solid from liquid at temperature Te [3, 

6], thus forming an isotherm.

Most thermophysical properties o f a material (usually varying smoothly with temperature) 

undergo more or less sudden changes at TE. Such discontinuities in thermophysical 

properties complicate the mathematical problems because they induce discontinuities in 

the coefficients o f differential equations. However, the most fundamental and pronounced 

effects are due to changes in density. Typical density changes upon freezing or melting are 

in the range o f 5% to 10% but can be as high as 30%. For most materials the solid is 

denser than the liquid although the opposite is true for water. The density variation with

7
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j
4 temperature induces flow by natural convection in presence o f gravity, rapidly equalizing

the temperature in the liquid and greatly affecting heat transfer [3 ,6 , and 9],

2 .3.2. Assumptions

In the process o f formulating the computational model, the following physical assumptions 

are typically taken into account so that the mathematical model is computable while 

maintaining the computational precision. According to these assumptions, the phase- 

change process involves a PCM (phase change material) with density p ,  latent heat L, 

melting temperature TE, phase-wise specific heats c , and thermal conductivities k . In the 

most common cases, it is very reasonable for pure materials, small container and moderate 

temperature gradient, that heat is transferred isotropically only by conduction through 

both the solid and the liquid, and all other effects including possible gravitational, elastic, 

chemical, and electromagnetic effects are assumed to be negligible. Latent heat that is 

assumed to be constant is released or absorbed at the phase-change temperature, which is 

regarded as a fixed known temperature, a  property o f the material In many situations, 

nucleatiofl difficulties and supercooling effects are assumed to be absent. For interface 

between liquid and solid phases, interfacial thickness and structure are assumed to be 

locally planar and sharp at the phase-change temperature, and the surface tension and 

curvature at the interface are assumed to be insignificant. In order to avoid bulk movement 

of material density is assumed to be same in the solid-liquid phase-change process [3,9].

In deriving the model it is typically assumed that all the functions representing physical 

quantities are as smooth as required by the equations in which they appear. O f course this 

assumption has to be used a-priori in order to proceed with the formulation o f the 

mathematical model but has to be justified a-posteriori by proving that the resulting 

mathematical problem does indeed admit such smooth solutions [3,9].

8
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2.3 J .  Stefan Condition

In a melting or solidification process, consistent with the assumptions above, the physical 

region £2 occupied by the phase change material will be subdivided into two phases, liquid 

and solid, separated by a  sharp interface with zero thickness [3].

Interfaced#

Liquid Region
Solid Region

Figure 3

Interface Between Liquid and Solid Regions

At the interface X  = X (t) , the following two conditions are typically satisfied under 

equilibrium phase change. Both o f these conditions were first formulated by Stefan 

[Alexiades and Solomon, 1993], and commonly referred to as Stefan Conditions.

tint Tl{ x , rj *  Te lim 7 ^ x , rj = TE (la)

x -► interface X (t) x  -+ interface X(r)

x e  liquid x€SOlid

Interfacial energy balance:

dX  -* -* -* -*
p L —  ~ q t -n - q s-n (lb)

9t
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where qL- n and qs n are the heat flux normal to the moving surface in the liquid and the 

solid, respectively. Conservation o f energy in each phase demands that a  heat conduction 

equation be satisfied there. The latent beat released due to the interface displacement 

equals the net amount o f heat delivered to (or from) the interface per unit area per unit 

time. Thus, the second condition (equation lb) is a  statement o f heat balance across the 

interface [3]. The first condition (equation la) is, however, an assumption, and is only true 

under equilibrium phase change. In this thesis, it is only this first interfacial condition that 

is referred to as Stefan condition, in order to distinguish it from the more general kinetics 

condition, which will be presented later.

Around 1890, J. Stefan formulated the problem o f solving the temperature distribution and 

freezing front history o f a solidifying slab o f water. In the last 30 years, the problem 

bearing bis name has been extended to include such complex phenomena as the 

solidification o f alloy systems, supercooling, melting due to Joule heating and laser 

irradiation which we are working with [3].

For more accurate answers for the physical phenomena, some o f the above assumptions 

are not valid. For example, the interfacial temperature, as given by equation (la), is not 

equal to equilibrium temperature, Te , o f the material under intense laser irradiation 

because o f the influence o f kinetics in phase transitions.

10
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3. PROBLEM STATEMENT

The objective o f this study is to build a one-dimensional mathematical model to simulate 

the heat transfer process in laser ablation o f a solid slab with a finite thickness. In the 

process o f laser irradiation, the target will undergo a transition in its physical structure 

from a  solid phase to a liquid phase [Alexiades and Solomon, 1993] [1 ,2, 3 ,4 , 6, 10, 11, 

12, 13, and 14]. This numerical simulation also tracks the sharp moving boundary that 

separates liquid phase and solid phase. In the numerical model, two alternative interfacial 

conditions have been used: (I) Stefan condition where the interfacial temperature is 

assumed to be always equal to the equilibrium melting temperature, and (2) the kinetics 

condition where the interface is superheated [Sobol, 1995]. This study also compares the 

computational results that are obtained with those two alternative interfacial conditions [1, 

4, 6, and 15].

Incident laser intensity: q” (w/m )

1 1  i 1 I 1 I 1 0
Free surface

Liquid
Melting interface

m

(Properties are constant and 
equal in liquid and solid

X

Back surface: I
Convection cooling with an effective heat transfer 
coefficient h and coolant temperature Ta

Figure 4

Geometric Parameters o f the Target

u
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Definition o f the computational problem includes the governing differential equations, and 

boundary, interfacial and initial conditions [3, 16]. The test material for the target is iron 

with pure crystalline structures. The one-dimensional computational domain used in this 

mathematical model is presented in Figure 4 [4].

3.1. Governing Equations of Unsteady Heat Conduction

When a high-power laser irradiates a solid with a high heat flux, immediately after the 

irradiation starts, energy transport within the solid is governed by non-Fourier equation 

that accounts for the finite thermal propagation speed. The use o f the non-Fourier 

equation removes the nonphysical phenomenon of the diffusion equation analysis that 

predicts instantaneous temperature disturbances at all points m the medium for a step heat 

flux at the boundary. It further removes the singularity o f an infinite  temperature at the 

irradiated surface as time goes to be zero. Adversely, the classical Fourier theory is based 

on an infinite speed of propagation o f the thermal signal and indicates that a local change 

of temperature causes an instantaneous perturbation in the temperature at each point of 

the medium, even if the intervening distances are very large. Thus, the uses o f theory of 

Fourier heat conduction leads to inaccurate temperature and heat flux profiles at high 

irradiation and at early times. At later times (compared to thermal relaxation time), Fourier 

conduction laws provide accurate predictions [16,17,18,19, and 20].

Since validity o f Stefan condition a t the interface is the mam focus o f this research, and 

since results for very short time intervals are not the prime objectives, Fourier conduction 

laws have been used here as the governing equations. The computational domain can be 

idealized as an infinite plate with finite thickness and with no temperature gradients along 

the y  and z  coordinates. The unsteady state temperature distribution will be one 

dimensional and will satisfy the following diffusion equation [3,4 , 13,16,17, and 21]:

dTL{x, r) t dTL2(x,t)............... ....................
p c — ——  = k — —  for liquid region (2)

12
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dTs(x,t) , <?T/(x,t) ^ .
p  c — ——  = k  — —  for solid region (3)

Here, k  is the thermal conductivity o f a material and depends on the material chemical 

composition, physical structure, and state. Also it varies with the temperature, and mildly 

with the pressure, o f the material The value o f thermal conductivity in a material is 

changed with its phases. In liquid phase, molecular force fields exert a  strong influence on 

the energy exchange during molecular collisions. However, heat conduction in solids with 

crystalline structure depends on the energy transfer by molecular and lattice vibrations and 

free electrons. Generally, energy transfer by molecular and lattice vibrations is not as large 

as the energy transported by free electrons. The value o f thermal conductivity for the solid 

is higher than that for the liquid [16, 21, and 22]. To simplify the relevant equations and 

calculation, the values o f thermal conductivity, specific heat c and density p  are assumed 

to be constant and keep unchanged in the melting process [3].

3.2. Boundary and Initial Conditions

In order to have a well-posed mathematical problem [3], the appropriate boundary and 

initial conditions need to be specified. In the Pulsed Laser Deposition reactor [1, 5], the 

target is mounted on the target holder in the chamber that is actively cooled by a cooling 

gas with the constant temperature Ta, which is the ambient temperature for the backside 

thermal convection to the coolant, and is same as the target’s initial temperature T, .

3.2.1. Imposed Flux

When laser radiation is incident on the target, the plume that is formed over the target 

surface absorbed a part o f the laser energy, before the laser beam can reach the target. The 

rest of the. energy is partially reflected by the boundary surface. This study does not 

consider either o f these two losses. The laser beam over the boundary surface is simply 

considered as a time-invariable fixed heat source in this one-dimensional mathematical

13
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model so that Fourier’s law o f heat transfer is applicable. The corresponding boundary 

equation is presented as [3, 16, and 18],

o x (4)

where q" is viewed as a constant surface heat flux and is fixed at the target surface.

3.2.2. Convective Flux

A convection cooling condition is considered on the back surface o f the target. The 

conduction flux through the solid target is equal to the convection heat flux, as given by 

Newton’s law o f cooling [3, 6, and 16].

where h is the heat transfer coefficient between the back surface o f  the target and the 

ambient air. This coefficient depends on the flow conditions, thermophysical properties of 

heat transfer fluid and dimensions o f the target boundary. In this situation, it is assumed 

to be a constant

3.2.3. Interface Condition

One major characteristic o f phase-change problems is that, in addition to the temperature 

field, the location of the interface between liquid and solid regions is also unknown. 

Energy balance at the interface shows that the rate o f change in latent heat pLX 'it) 

equals the amount by which the heat flux jumps across the interface [3].

(5)

3TL(X ,t)  3Ts (X ,t)  
3 x  3 x («)

14
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where £ is the latent heat that represents the difference in thermal energy (enthalpy) levels 

between liquid and solid states. It is also called heat o f fusion in the case o f solid-liquid 

transformation [3].

3.2.4. Role o f Kinetics in Melting

One additional question is needed at the interface in order to have a complete and well- 

posed mathematical formulation o f the problem. The mam question that needs to be 

answered is which physical factor determines the interfacial temperature? At low rates of 

phase transitions, the interface temperature is a  fixed known temperature equal to the 

equilibrium melting temperature, TE. The growth o f a new phase is governed not only by 

the rate o f energy input (or removal), but also by the kinetics o f the processes taking place 

at the moving interface [Sobol, 1995] [4,6 ,15, and 23]. Depending on which o f these two 

processes in a given case, the mathematical and computational formulations o f the 

problem will be significantly different. This difference is the focus o f this study.

Where the rate o f heat input is slow and the rate o f atomic transitions at the interface can 

keep up with the rate o f  heat transfer, the growth o f the new phase takes place in 

isothermal conditions around the quasi-equilibrium temperature. In this situation, the 

assumption o f Stefan problem, as presented in equation (lb), is reasonable. The law 

governing the movement o f the phase boundary can be found by solving the heat 

conduction problem in a domain with a moving boundary on the basis o f the condition that 

melting temperature Tm equals thermodynamic equilibrium temperature TE [4]. As a 

result, the phase transition takes place in the condition that the moving interface is at a 

constant temperature TE.

T ,(X ,t)= T,(X ,t)= T. = TE (7)

However, in the second situation where the rate o f heat input is high and the atomic 

transitions at the interface can not keep up with the rate o f energy transport, the kinetics
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o f phase transition dictates the movement o f the interface and the interfacial temperature. 

In this case, the interfacial temperature Tm is possible to be substantially higher than the 

thermodynamic equilibrium temperature TE, and the interface is said to be superheated. 

The rate o f  melting and the rate o f  interface motion depend on the rate at which atoms can 

cross the pbase-separation interface, as given by [4,23]

ds r m K  ,e x p ( - ^ r )  { '  - exp( - ^ ) )  (8 )

Here, Agb and Agm are the Gibbs free energies (per molecule) corresponding to the phase 

transition barrier and the latent heat o f phase transition, as shown schematically in Figure 5 

[4, 15],

5 is the interphase separation distance
between the phasesa and p

B4>eui
«
22u.

J2.o
6

8 a

Figure S

Schematic Variation o f Free Energy in Melting

K is a characteristic speed o f the material that can be approximated by the speed o f 

sound, kB is the Bottzman constant and Tm is the interface temperature which is higher 

than the thermodynamic equilibrium temperature (here, TE) in order to cause any phase

16
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transition. It should be noted that Agb can also be considered as the activation Gibbs free 

energy necessary for the diffiision/migration o f the atoms/particles across the interface. 

Under small departure from the equilibrium condition, the Gibbs free energy for phase 

transformation can be approximated as [4,6, and 15]

where A/i^is the latent enthalpy o f melting per molecule and is equal to LMZNa, Af is the 

molecular weight, and Na is Avogadro’s number.

3.3. M athem atical Model

The entire process o f heat transfer with phase-change in a  target with a finite thickness, /, 

can be divided into two stages. The first stage is the heat transfer before melting. In this 

stage, the equation o f unsteady heat conduction in the solid without any phase transition is 

to be solved until the free surface o f the target gets to the equilibrium melting temperature. 

The second stage is heat transfer with phase transition, and starts after the first stage ends.

3.3.1. Heat Transfer before Phase Transition

r=rs(*,t)

p c ~ — k ~ 1 7 ~

f o rO<x£ / ,  / > 0

( 10)

(ID

( 12)

(13)

17
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3.3.2. Heat transfer with Phase Transition

X = X (t)

T= TL{x ,t)

T=Ts(x, t)

dTL(x,t) , dT L2(x,t) 
d t  d x 2

dTs(x,r) t dTs2(x,t)

p c  

p  c
d t

rt(x,o)=r. 
X(0) = 0

d x 2

<?TL(0,t) 
d x

Q < X £ l

fo r  0 < x <  X(t), t  > 0 (liquid region) 

fo r X (t) < x< [, t> 0  (solid region)

dX  . dTL(X ,t)  . dTs(X ,l)
p L —r -  K   + k ----- -------

dt d x  d x

T,(X,t)=T,(X,t)

T,(X,t)=T,(X,i)=Tm = TE in Model I 

in Model!!

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22- 1)

(22-2)

The time when the target starts melting is preset at zero for the computational 

convenience. As mentioned earlier, two mathematical models are developed here. The first 

model, which is based on Stefan condition at the interlace, is made up o f the equation (10) 

-(21) plus the equation (22-1) without consideration o f the influence o f kinetics in phase 

transition. The second one, is made up o f the equation (10) -(21) plus the equation (22-2) 

with consideration o f the influence ofkinetics in phase transition.

18

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

3.4. Further Consideration

In order to find more exact answers, more complicated physical processes that take place 

as a result o f laser-target interactions in the target region o f a PLD reactor, have to be 

considered [I]. Some o f these processes may even be different from one case to another 

depending on whether the target is a metal, o r a semiconductor, or a superconductor, or a 

polymer, and depending on the pulse duration and peak power density. It should be noted 

that in a PLD process, there may be two different moving interfaces: the ablation interface 

and the melting interface, as shown in Figure 6 [1].

Target surface at t  — 0

. Ablation interface

Melting interface 

Back surface

Figure 6

Geometric Parameters o f the Target in Laser Ablation

Some o f these physical processes that may have to be considered in a  complete 

mathematical model for laser-solid interaction as applicable to PLD are described below.

1. Bulk absorption o f laser intensity: The laser energy that is incident on the target 

surface is partially reflected and the rest is absorbed over a  depth into the target, not 

just at the surface. As a  result o f this volume absorption, the laser intensity decreases 

with increasing depth into the target and is given by [1 ,24]

19
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l(x ,t)  = / s(f) .{ l-* [7 f ,r ,( /))]} .e x p [-  £ (o<rI(71Cx'))<fc'] (23)

where Is (t) is the time-dependent laser intensity arriving at the surface o f the target.

R is the surface reflectivity, which is a  function o f the boundary temperature that is 

measured at the ablation interface that is located at x = X ,(r) as shown in Figure 6. 

a { is the linear absorption coefficient for volume absorption, and is also a  function of 

local temperature and hence a function o f the spatial coordinate. As a result, the 

integral on the right hand side o f the equation (23) needs not be a trivial one. The bulk 

absorption affects the energy balance inside the target as the laser energy is converted 

into internal energy and hence appears as an energy source term in the appropriate 

energy conservation equation. This source term per unit time per unit volume is given

2. Shape o f laser pulse: The temporal variation o f laser intensity, / , ( ; ) ,  within each pulse 

is not rectangular as assumed in numerical modeling. The temporal shape o f a typical 

excimer laser pulse is shown in Figure 7 [1], The actual pulse shape should be 

considered in any numerical model for industrial usage.

by[l, 13]

dx
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Figure 7 

A Typical Excimer Laser Pulse

3. Non-equilibrium heat conduction in solids: The primary dissipative interaction o f the 

incident laser beam with a solid is the absorption o f photons by electrons, although 

under certain conditions, optical phonons may also participate in the absorption 

process. In metals, the dominant absorption mechanism is through the free-free 

transitions o f the conduction electrons, whereas in the semiconductors, it is through 

the creation o f electron-hole pairs and/or excitons. However, in semiconductors, 

excitons are converted immediately to electron-hole pairs, and hence a separate energy 

balance equation for excitons is not necessary. The same thing cannot be said about 

insulators with small dielectric constants for which a separate energy balance equation 

is necessary. The electrons in their excited states transfer some o f their energy to other 

electrons and to  lattice vibrational modes or phonons. At higher laser power density 

and short pulse duration typical o f PLD, the energy in the electronic and phonon 

modes do not reach an equilibrium, and hence separate energy balance equations have 

to be considered. Here, the two-temperature model is used where the energy balance

21

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

equations for the electrons and the phonons are expressed in terms o f the electron 

temperature, Tt , and the phonon temperature, Tp, respectively. The electron and

phonon temperatures are measures o f their respective energies such that the 

temperature would be equal to the conventional temperature o f the solid in case o f 

equilibrium between electron and phonon energies. The net rate o f energy transfer, per 

unit volume, from the electrons to the phonons is given by [1,13],

where, m€ is the electron mass, TD the Debye temperature o f the material, kg the 

Boltzman constant, h the angular Planck constant, Vt , the speed o f sound in the solid 

and U  a term which is affected by the electron-phonon collision time. The coefficient 

G that is defined in equation (25) and that is a function o f the electron and the phonon 

temperature, is called the electron-phonon coupling coefficient.

I. Hyperbolic conduction: For short pulse duration and high laser power density, thermal 

relaxation time, r r, for diffiisional transport o f heat in the solid may not be negligible 

compared to the pulse duration, and in that case, Fourier heat conduction equation 

should be replaced by the hyperbolic conduction equation [1,13]:

where q is the heat flux (in the x-directkm). It should be noted that typical values of 

the relaxation time are 10 seconds for biological tissues and porous materials at room 

temperatures to 1 nano-second for superconductors at cryogenic temperatures to 1 

pico-second or less for metals and semiconductors at room temperatures. Hence,

G(T„Tp) *(Tt -T p)*
mt2U \ k aTD)5 f Tt  ( 
16ff3h7Pt v ;  Td *(.Tt -Tp) (25)

(26)
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i

whether equation (27) should be considered in the model depends on the specific 

application and the pulse width [1].

II. Kinetics o f vaporization: Under the assumption that the vapor pressure at the surface 

is equal to the saturated vapor pressure, P „ , at the free surface temperature and that 

the flow normally outward from the surface is described by a one-sided Maxwell* 

Bohzman distribution at the flee surface temperature, and with the help o f the 

Clausius-Clapeyron equation for P ^ ,  the mass flux due to vaporization can be 

expressed as [I]:

where /* is the reference pressure used in the Clausius-Clapeyron equation, AH, is the 

latent heat o f vaporization per molecule, m is the mass o f  the ejected particles 

(molecules), r . is the free surface or ablation interface (Figure 6) temperature, ka is 

the Bohzman constant, and ne is the number density o f molecules in the condensed 

phase. Equation (28) which is also referred to as the Hertz-Langmuir-Knudsen 

formula can be rearranged as [1]

where X t(t) indicates the location o f the free surface or the ablation interface, shown 

in Figure 6.

Besides those processes that are described above, there are other processes that could be 

present in the target region o f a  PLD reactor. Some o f these other processes are listed 

below so that they can be included in the future mathematical models [1]:

(28)

(29)
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1. Absorption by optical phonons: In the infrared region, the incident photons may be 

absorbed by optical phonons. This is particularly important for organic polymers.

2. Absorption o f incident laser energy hi organic polymers: Organic polymers interact 

with photons in ways that are unlike the pathways by which metals and other inorganic 

materials interact with photons, hence the models presented in this paper have to be 

modified in order for simulation o f laser ablation o f polymers.

3. Interaction with the plasma region: The plasma region influences the processes in the 

target region in multiple ways. For example, as a  result o f the absorption o f a  fraction 

o f the laser energy by the plasma, the laser intensity at the free surface, 7 ,( 0 , is not 

the same as the originating laser intensity. Or, the behavior o f the plasma dictates the 

boundary condition for the target region at the free surface.

4. Some non-metals behave as metals in the molten state, and this behavior should also 

be included in the computational modeL

5. There can be fluid motion m the molten region, induced by buoyancy and Marangoni 

forces.

Although the complicated physical processes are not included in this thesis, they have to

be considered in any future mathematical model for the complete PLD process.
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4. DISCRETIZATION ALGORITHM

For scientific and engineering problems involving complicated physical processes, 

boundary conditions and material properties, it is generally impossible to obtain analytical 

mathematical solutions, which generally require the solution o f partial differential 

equations. The rapid development o f  computers has completely revolutionized research 

and practice in each scientific and engineering field. Computerized methods provide 

reasonable alternate solutions to these complex mathematical problems. Through 

numerical simulation o f physical processes, the computational methods working with 

computers yield approximate values o f the unknowns at a finite numbers o f discrete points 

in the domain. This is the approach that has been taken in this study [3,25].

In any computational method, the governing differential equations that define a given 

problem mathematically have to be replaced by a system o f algebraic equations through a 

process called discretization. The process o f discretization is a crucial step in solving a 

mathematical problem numerically since this process determines, to a  large extent, 

accuracy, stability, and even feasibility o f a numerical solution For a complete numerical 

solution o f a  problem, boundary and initial conditions that have been specified for the 

problem must be discretized as well Once a system o f algebraic equations is obtained by 

discretization, this system has to be solved in order to obtain the numerical solutions.

As a result o f the discretization, the final numerical solution is obtained either as a 

collection o f the values o f the unknown field variable(s) at a finite number o f discrete 

points in space and/or time, or as functions o f finite complexity o f space and/or time. The 

number o f those discrete points or the order or complexity o f those functions is commonly 

referred to as the order o f discretization. Typically, more is the order o f discretization,
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more accurate is the solution, but at the same tune more tune-consuming and expensive is 

the computation. Hence a compromise has to be made always in any numerical solution, 

and the key question that needs to be answered is: what should be the order o f 

discretization so that numerical solutions are accurate enough, yet computations can be 

performed within the given limited time and resources.

4.1. Some Basic Aspects of Numerical Computations

In computational methods for solving problems, as mentioned earlier, governing equations 

are always reduced to a set o f algebraic equations. All methods for obtaining a solution for 

a system o f algebraic equations can be categorized into two groups: direct methods and 

iterative methods. Direct methods are typically suitable for special and “well-behaved” 

system o f equations, whereas iterative methods are the most widely used ones in numerical 

computation. Choice o f a  method to solve the system o f discretized algebraic equations 

determines the accuracy and stability o f the numerical solutions. The solution method or 

algorithm should be chosen so as to minimize the error accompanying the numerical 

method. The stability o f each method should also be considered in selection o f numerical 

methods because lack o f stability gives a  solution that may exhibit non-physical or non-real 

oscillations in time or space [26].

All discretization methods call for some form o f iterations in order to obtain more accurate 

numerical solutions. These iterations can be o f two types. First, the numerical solutions 

have to be obtained with larger and larger order o f  discretization until the accuracy o f the 

solutions obtained is acceptable. This type o f iterations is called “grid convergence check”. 

Second, some discretization methods, specially some methods to discretize temporal 

derivatives, require calculation (or prediction) o f approximate solutions to be followed by 

repeated refinement (or correction) o f those solutions until solutions with acceptable 

accuracy is obtained. These iterations are called prediction-correction iterations and the 

corresponding discretization methods are called predictor-corrector methods [26].
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4.1.1. Iterative Methods

The concept o f iteration is one o f the most important concepts in computational methods 

for solving problems. In general, numerical solutions are often formulated m terms o f an 

infinite process o f repeated iterations. A particular iterate is determined according to some 

formula from the previous iterates [27, 28]. Iterative formulations o f problems often 

suggest useful computational solutions. However, two problems should be figured out for 

the accuracy o f solution and validity o f computational tools. The first one is the “stopping 

criteria”: which iterate should be accepted as the desired approximation so that the 

process o f repeated iterations can be stopped. The second problem that arises in 

connection with iterative processes is: does that process actually converge?, or does it 

converge to the desired quantity? In some cases, non-convergence may be discovered by 

actually computing iterates. In more complicated iterations, it may be expensive to 

compute even “one” iterate. For this reason, it is necessary to predict in advance whether 

the iterates will be likely to converge.

4.1.2. Numerical Errors

Any numerical solutions should be considered as a mere approximation to the exact 

solution, and the difference between the two is called numerical error. Numerical errors 

can be separated into two groups [26,29]:

1. Round-off errors: Errors caused by finiteness o f number representations in the 

computer are called round-off error that occurs when data must be rounded to a 

certain number o f digits before they can be accepted by the computer. In order to 

evaluate the effectiveness o f any numerical algorithm, it is necessary to examine the 

effect o f rounding errors. Many algorithms that would work quite well if there were no 

rounding errors foil completely in actual use because o f them. Sometimes, in some
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situations, there are algorithms that work effectively only because round-off errors 

perturb the results just enough to avoid certain anomalities [26].

2. Truncation errors: Errors caused by the finiteness o f resources available for solving the 

problem are called truncation errors. The process o f approximating functions by 

appropriate rational functions introduces this Irfnd o f error, as do the discretization 

processes. Also, the error caused by stopping an iteration after finitely many steps is of 

this type. In most cases, the truncation error is introduced before the numerical 

computation ever begins. When truncation error is caused by a discretization process, 

the smaller this error is, the more complicated is the resulting numerical process. 

Furthermore, the amount o f round-off error is directly proportional to the complexity 

o f the computation. Thus, in many cases, reducing the truncation error causes the 

round-off error to increase [26].

4.1.3. Stability o f Numerical Methods

Many numerical methods that have been proposed for solving certain problems would 

work quite well if exact arithmetic were used. Unfortunately, numerical errors can never 

be avoided in a computational method, and hence the appropriate question is whether a 

numerical method is stable. If small perturbations caused by ever-present numerical errors 

get amplified and produce large errors in the numerical solutions, the corresponding 

numerical method or algorithm is called an unstable one.

Many numerical methods, including the ones that this study is applying, determine a 

sequence o f values, each o f which is obtained from previously computed values. For an 

unstable method, small errors in the earlier values are grossly magnified by later 

computations, and the final results are quite inaccurate. Also, in some situations, errors 

made in early stages o f a computation may have a strong effect on later stages o f the 

numerical solution o f differential equations [26].
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4.2. Computational Methods

Not all kinds o f numerical methods are amenable to any given numerical method. Neither 

are all kinds o f numerical problems equally effective for any given mathematical problems. 

Analyzing the effectiveness o f numerical methods for any given mathematical problems is 

essential for better computational simulation [26]. The following discussion is focused on 

different approaches for the discretization o f spatial derivatives in governing differential 

equations: finite-difference, finite-element, and spectral methods.

4.2.1. Finite-Difference

O f all numerical methods available, the finite-difference methods are the most frequently 

used. The mam idea in finite-difference methods is to replace derivatives with linear 

combinations o f discrete function values at two or more neighboring points [25, 30]. The 

problem domain is “discretized” so that the dependent variables are considered to exist 

only at finite number o f discrete points [17, 20]. The principle o f Taylor series expansion 

plays a very important role in the formulation and error analysis o f finite-difference 

discretizations [22,25, and 30].

Finite-difference methods have the virtue o f simplicity and they account for a large 

proportion o f the numerical methods actually used in applications. However, it is never 

possible to refine the mesh size to zero, and the calculation must be made on a finite grid 

o f discrete points. There are discretization errors that are caused by the truncation error in 

the difference representation o f the partial differential equations (PDE) phis any error 

induced by treatment o f boundary conditions in the numerical solution [25].
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4.2.2. Fioite-Elcment and Its Comparison with Finite-Difference

In finite-element method, the whole space or computational domain is divided into a finite 

number o f regions or elements. Instead o f solving the problem for the entire body in one 

operation, the finite-element method formulates the equations for each finite-element and 

combines than  to obtain the solution o f the whole body [31, 32]. The underlying principle 

o f the finite-element method is its ability to easily solve problems described by complex 

boundary shapes [25]. This method was initially developed to calculate stress in irregularly 

shaped objects and analyze structural problems in aircraft. Since its inception, the finite- 

element method has been found to be equally effective in nonstructural problems, 

particularly those in heat transfer and fluid dynamics [25, 31]. Conventional finite- 

difiference methods are based on the assumption that truncated Taylor series expansions of 

the spatial derivatives yield adequate approximations to differential equations. Finite- 

difference algorithms display good accuracy in the limit as Ax-»0  [25]. No such 

assumption is implied in the finite-element method; finite-element algorithms are based on 

finite Ax. This conceptual difference helps to explain the general superiority o f the finite- 

element method over finite-difference method on coarse grids; however, as Ax —► 0 , the 

finite-different method also becomes more accurate [25], and differences between the two 

methods disappear.

In the finite-element method, reduction o f the governing partial differential equations to a 

finite system o f ordinary differential equations with thne-derivatives is typically performed 

using either the Raleigb-Fitz method or the method o f weighted residuals (MWR) [22,25, 

and 27].

Like many analytical methods, the finite-element method is based on the series expansion 

o f the unknown functions themselves. In a typical series expansion, an infinite number o f 

global basis functions span the entire domain [25]. However, in the finite-element method,
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only a finite number o f basis functions that are local in nature (nonzero over only a  small 

segment o f the domain) are employed.

4.2 .3. MWR and Its Spectral Methods

Spectral methods have become increasingly popular in recent years, especially since the 

development o f fast transform methods. It may be viewed as an extreme development o f 

the class o f discretization schemes for differential equations known generically as MWR 

[27,28, and 29]. The key elements of the MWR are:

1. A set o f trial functions (also called the expansion or approximating functions) is used 

as the basis functions for a truncated series expansion o f the solution [27,28].

2. A set o f test functions (also known as weight functions) is used to ensure that the 

differential equation is satisfied as closely as possible by the truncated series 

expansion. This is achieved by minimizing the residual, Le., the error in the differential 

equation produced by using the truncated expansion instead o f the exact solution, with 

respect to a suitable norm. An equivalent requirement is that the residual satisfies a 

suitable orthogonality condition with respect to each o f the test functions [27,28].

The choice o f trial functions is one o f the features that distinguish spectral methods from 

fimte-element methods and finite-difference methods. The trial functions for spectral 

methods are infinitely differentiable global functions. On the contrary, in the case o f finite- 

element methods, the domain is divided into small elements, and a trial function is 

specified in each element. The trial functions are thus local in character, and well suited for 

handling complex geometries. The finite-difference trial functions are likewise local [27].

The choice o f test functions distinguishes among the three most commonly used spectral 

schemes, namely, the Galerkin, collocation, and tau versions. In the Galerkin approach,

JL
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the test functions are the same as the trial functions. They are infinitely smooth functions 

that individually satisfy the boundary conditions. The differential equation is enforced by 

requiring that the integral o f the residual tunes each test function be zero. In the 

collocation approach, the test functions are translated Dirac delta functions centered at 

special, so-called collocation points. This approach requires the differential equation to be 

satisfied exactly at the collocation points. Spectral tau methods are similar to Galerkin 

methods. However, none o f the test functions needs to satisfy the boundary conditions. 

Hence, a supplementary set o f equations should be used to apply the boundary conditions

[27].

The collocation approach is the simplest o f these three spectral methods. The Galerkin 

approach is an elegant example o f the method o f weighted residuals since the trial 

functions and the test functions are the same and the physical problem can be discretized 

in terms o f a variational principle. Finite-element methods customarily use this approach. 

The tau approach is a modification o f the Galerkin method that is applicable to problems 

with non-periodic boundary conditions. It may be viewed as a  special case o f the so-called 

Petrov-Galerkin method. The interpretation o f spectral methods as MWR methods has 

proven very successful in the theoretical investigation. As a matter o f fact, it has opened 

the road to the use o f techniques o f functional analysis to handle complex problems and to 

obtain the most accurate results [22,27, and 28].

4 J . Chebyshev Collocation Method

On the basis o f the following comparisons with finite-difference and finite-element 

methods, the spectral method using Chebyshev polynomials as the trial functions is 

selected for the current problem [13].
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4.3.1. Selection of Spectral method

1. For an infinitely smooth (Le. differentiable) solution to be considered, the properly 

designed spectral method may make errors go to zero faster than any finite power of 

the number o f expansion terms o f retained modes. In contrast, finite-difference and 

finite-element methods yield finite-order rates o f convergence. The spectral methods 

can achieve high accuracy with little more resolution than is required to achieve 

moderate accuracy [13,27, and 28].

2. Since spectral methods typically require a factor o f  2-5 fewer degrees o f freedom in 

each space direction to achieve moderate accuracy, the spectral computations can be 

considerably more effective [13,27, and 28].

3. The mathematical features o f spectral methods follow very closely the partial 

differential equation being solved [27]. Thus, the boundary conditions imposed on 

spectral approximations are normally the same as those imposed on the differential 

equation. In contrast, finite-difference methods- o f higher order than the differential 

equation require additional “boundary conditions.” Many o f the complications of 

finite-order finite-difference methods disappear with the infinite-order-accurate 

spectral methods.

4. Relatively few grid points are needed for spectral discretization because o f the global 

nature o f the interpolating functions [13,27, and 28].

In spectral methods, Galerkin spectral method produces very accurate solutions with 

relatively few unknown coefficients in the approximate solution [27]. However, when 

nonlinear terms are involved, the evaluation o f products o f  approximate solutions becomes 

very time-consuming. This lack o f economy motivates the use o f collocation instead o f a 

Galerkin formulation. Collocation facilitates seeking the solution in terms o f nodal
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unknowns, like the finite-difference and finite-element methods, rather than in terms of the 

unknown coefficients in the approximate solution. The explicit use o f nodal unknowns 

also permits boundary conditions to be incorporated more efficiently than does the 

Galerkin spectral method [28]. Consequently, the collocation spectral method is used hi 

this study.

43.2. Description o f Chebyshev Collocation M ethod

Governing differential equations with first order time derivatives, like the ones for the 

current problem as described in equations (10), (14), or (15), can be written as [27, 28, 

and 34]

(30)

where u(x,t) is the unknown function that is to be solved and Af(u) is an operator that 

contains all the spatial derivatives o f u. In MWR, the approximate solution is represented 

as [16,22,27,28, and 29]

N!2
uy (x,t) — (31)

tm-ftn

where ^  are the trial functions, and ak are the expansion coefficients. Generally, the

approximate solution uH is different from the exact solution u, and larger is the order of 

discretization, Nt smaller is the difference or error. Thus, the residual [27,35]

d u s  A

will not vanish everywhere. The MWR approximation results by demanding [22,27]
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f [ ^ —  = 0 (32)

for k  — 0, ... N , , where test function y/k determine the weights o f the residual, and Q 

represents the limits o f the computational domain.

In Chebyshev Collocation Method, the Chebyshev polynomials are chosen as trial 

functions [5,29, and 33]

where xy are the collocation points in Q and will be defined later, and computational 

domain Cl is [-1,1].

The Chebyshev polynomials are cosine functions after a change o f independent variable

[36], and hence the function values are always limited between ± 1. This property is the 

origin o f the widespread popularity o f Chebyshev polynomials m the numerical 

approximation o f non-periodic boundary value problems. The Chebyshev polynomial o f 

degreen, T„{x) , is defined by [27,36]

r„(cos0) = cosn£ for n = 0, 1 ,... (35)

<h(x) = Tk(x) K  = 0, 1 ,..., M (33)

the test functions are the shifted Dirac delta-functions [22,27]

(34)

6 = arccosx, [-1 , l], T. « [ - ! . l] (36)

The Chebyshev polynomial can be expanded in power series as [27]

(37)
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where [Ar /  2] denotes the integral part o f k  /  2. Moreover, the trigonometric relation 

cos(fc+ 1)0+ cos(£ - 1)0= 2cos#cos£0 gives the recurrence relation [27]

rt+l(x) = 2x7; (x) -  r4. t(x) with

T0(x) a  1

Tx{ x ) ^ x  (38)

As a result o f the choker o f the test functions, the standard MWR condition, as given by 

equation (32), reduces to the requirement that governing equations be satisfied at each of 

the collocation point x; [27]:

= 0 (39)

As is typically the case for ended two-ended boundary value problems where boundary 

conditions are specified at both boundaries o f the computational domain, Gauss-Lobatto 

points are chosen here as the collocation points as follows [27,29, and 33]

r ^ N - j )
Xj  =COS ~jy , (40)

then, values o f the trial functions at the collocation points are given by [27,29, and 33]

(41)

One o f the biggest advantage o f collocation method over Galerkin or tau method is that 

the expansion coefficients can be expressed in terms o f the nodal values, u f ( t ) , o f the 

approximate solution [27,28], as given by

a,(r) = 7| - K-0, 1 N, (42)
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_ [2 J  = QorN
where ?*=|i i s j s k - i

It should be noted that the superscript N  in u‘J(r) indicates that those nodal values are for

the approximate solution u* (x,t) , where larger is the order o f discretization N  is, better is 

the approximation.

The analytic first and second order derivatives are expressed by [27,29, and 33]

«*(,,(')r*(x) (43)
CX M

= 'L ak 2\t)T k(x) (44)
twOdx2

where a ^ ( / )  = 0 

og> (0-0

c X l)W = a?i2 W + 2 U + l)a t (r) K = N - 1, N -2 , .... 0,

and « S ,(0 * 0

o « ( f ) .  0

cta<2)(r) = a<2)2(f)+ 2(AT+ l)^ ° (r) K = N - l ,  N -2, 0,

Once Chebyshev collocation method is applied to a  governing PDE, such equations (10),

(14) or (IS), a  set o f (JV+1) ODEs (ordinary differential equations) are obtained by 

combining equations (31), (39), (41) and (44). These ODEs involve d u f( t) /d t , first-

order time derivatives o f the nodal values, u " ( t) , and are o f the form

duH
= /( « *  {t), t) K  = 0,.1.......N - 1 ,  (45)

37
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It should be noted that two additional equations, corresponding to K=Q  and M, are 

obtained from the boundary conditions.

4.4. Discretization of Time Derivatives

Among the numerical methods for discretization o f first-order time derivatives, linear 

multistep methods constitute one o f the most important families [16]. According to 

Cauchy’s theorem, for an initial-value problem o f the type [29,33]

satisfies equation (46). However, the existence and uniqueness o f a numerical solution o f 

equation (47) depend on the numerical method or algorithm, and is not guaranteed by the 

above theorem. The objective o f the numerical method is to construct a sequence of 

values v(0), v(l),... such that

where tH = n-A t, and A/>0 is the time interval that defines the size o f the temporal 

discretization. A linear multistep method is a formula for palmihtiwg each new value v("*° 

with the help of the values from the previous s time steps v('H,I_,), ..., vM and

(46)

i f / M  is continuous with respect to t  and uniformly Lipschitz continuous with respect 

to v for t e [0 ,r], and T>  0 , then there exists a unique differentiable solution v(r) that

n > 0 . (47)

(48)

Thus, the general expression for a s-step linear multistep formula for calculation o f v("+I) 

is given by [29],
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= < ! / • ] > > , ,  (49)
y = 0  y » 0

for some constants {ay} and { $  } with 0^=1- Typicalfy, many o f the constants in either

{ d j} or { f y } series are taken to be zero so that the rest o f those multistep coefficients or

constants can be uniquely determined so as to provide the maximums possible accuracy. 

Moreover, I f  $  = 0 , the multistep formula is explicit, while if $  * 0 , the formula is 

implicit. The simplest linear multistep method is an explicit one-step method (Euler 

formula) and an implicit one-step method backward Euler formula, defined by [29]

(50)

v0**0 = vw + dr • . (51)

4.4.1 Adams and Backwards Differentiation formulas

The oldest linear multistep formulas are Adams formulas, the s-step Adams-Bashforth 

(ABs) and Adams-Moukon (AMs) are the optimal explicit and the optimal implicit 

formulas o f this type [29,32], respectively:

AMs: -  v("‘ =Ar • (52a)
y-o

ABs: vw  - v w (52b)
y - i

where the coefficients { fy } are chosen to maximize the order o f accuracy, and in both 

cases, this choice turns to be unique. I f  we consider the values f M (ABs) or

/ ( - ‘- 'I, ..., /<”*» (AMs) as discrete samples o f a continuous function

f{ t)  -  /(« (r), r)that we want to integrate [29],

JL
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(53)

in order to obtain w ^ ,) .  However, / ( f )  cannot be integrated analytically as it is not a 

known function, and is approximated by q(t) , which is the unique polynomial o f degree at 

most s - \  (Adams-Bashfbrth) or (Adams-Moulton) that interpolates the numerically 

obtained data . That is, the multistep formula for Abs or AMs as given by

equation (52) are obtained from [29]

v(~« _ VW = (54)

Since the integral is a  linear function o f the data }, the coefficients { }  can be

computed once and for all, and tabulated [Trefethen, 1989] as presented in Tables 1 and 2 

[29, 34].

Table!

Coefficients {/^} ofAdams*BashforthFormulas

number 

o f steps s order p fit fil fil Pi

I I 0 I

2 2 0 Vi 'Y l

3 3 0 % - % X l

4 4 0 % - % % - 9/24

Beside Adams formulas, the s-step backwards differentiation (BDs) formulas form the 

most important family o f linear muhistep formulas. Like AMs, BDs is the r-step optimal 

implicit formula with [29]:

40
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BDs: v("+,) + £  a ,v w = 6 t (55)
y « t

Table 2

Coefficients { $  } o f  Adams-Moulton Formulas

number 

o f steps s order p 4 A A A A
0 1 l

1 2 X X

2 3 X* * 2 - X 2

3 4 % -X 4 X .

4 5 “ X 20 * % 0 1

0 '% o - % o

Unlike ABs or AMs, BDs formulas allocate the optimizing or free parameters to the {<zy} 

rather than the { $  }, and hence are “maximally implicit” in the sense that the data

{ }  enters the calculation only at the tone step n+1.  For this reason, BDs formulas 

are the hardest to implement of all linear muhistep formulas, but they are also the most 

stable.

Table 3

Coefficients {fy  } o f Backwards Differentiation Formulas

number 

o f steps s orderp *0 “ 1 A
1 1 1 -1 I

2 2 1 - X X X

3 3 1 - % & - X i X i
4 4 1 - % % - % X 5 %

41
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Here the sequence is considered as a discrete data o f a continuous

function v(r). Since v(f) is unknown, it is approximated by p(t) which is the unique

polynomial o f degree < s that interpolates the data { }. In the definition of p(t) ,

v (*+l} is still an unknown, but is implicitly defined, and can be calculated by imposing the 

condition:

= ) = f U'"  (56)

which can be uniquely determine { a y} in equation (55). These coefficients [Trefethen, 

1989] [29,34] are tabulated in Table 3.

The 5-step Adams-Bashforth and Adams-Moulton formulas are stable for all s> I . The 

backwards differentiation formulas are stable for l £ s < 6 ,  but unstable for s > l.  The 

order o f accuracy for each of these formulas is also tabulated in Tables 1,2 or 3.

4.4.2 Predictor-Corrector

Typically, the explicit methods tend to be easier to implement and require less work per 

time step. In contrast, the implicit ones tend to be more stable as well as are able to take 

larger, and hence, fewer time steps with sacrificing accuracy to unstable oscillations [29].

The method o f predictor-corrector takes advantage o f merits o f explicit and implicit 

methods, while removing the disadvantages of theirs. The idea o f a  predictor-corrector 

method is to settle for the approximate solution generated by an iterative procedure, 

instead o f the exact solution, from an implicit formula. At each time-step, one explicit 

(such as ABs) “predictor” sub-step is taken, followed by one o r more explicit (such as 

AMs) “corrector” sub-steps. In each corrector sub-step, the value on the right-hand 

side o f the formula is taken from the precious sub-step, so that the Adams-Moulton
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formula is effectively explicit. It can be shown that under reasonable hypotheses, the 

predictor-corrector iteration at each time-step would converge eventually to the exact 

solution o f the Adams-Moulton formula [29].

Summarily, a  truly effective use o f numerical computation in applications requires both a 

theoretical knowledge of the subject and a computational experience with it. The 

theoretical knowledge should include an understanding o f both the original problem being 

solved and o f the numerical methods for its solution, including then derivation, error 

analysis, and an idea if they will perform well or poorly. The computational experience 

gives a sense o f reality to most theoretical discussions; it brings out the important 

difference between the exact arithmetic implication in most theoretical discussions and the 

finite-Iength arithmetic computation. Also, rapid development o f computer technology 

does not provide computer unlimited functions to handle all kinds o f problems o f any 

degree o f complexity, constraints on the structure o f numerical methods is always imposed 

in computer application.

43
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5. NUMERICAL MODELS

The computer simulation of a time-dependent physical process is based upon a discretized 

version o f a  mathematical model o f that process. Thus, in order to construct a numerical 

algorithm for the solution of the current problem, continuous field quantities such energy, 

temperature and spatial position, are replaced by their values at discrete points. Time itself 

is discretized as indicated in Section 4.4, and a marching process takes place through 

discrete time steps [3].

In order to simplify the numerical work for the current problem, which involves change of 

phase and movement o f the phase-separation interface, Front-fixing method is applied to 

fix the moving boundary. In one-dimensional problem, the transformation [3,13]

£ = x / X ( t ) ,  t > 0  (57)

which was proposed by Landau (1950), is used to fix the melting boundary at 1 for all 

t, maps the interval 0 £ x £ X ( t)  onto the fixed interval 0 ̂  £  1. Equation (57) is used to 

transform the governing equations. In case the moving boundary does not move smoothly 

with time, it is possible to directly track moving boundary with help o f this method [3,4, 

and 13].

5.1. Noa-dimeasioBal Discrete Equations

In the present problem, the computational domain is divided into two sub-domain: the 

liquid region and the solid region. Moreover, Chebyshev collocation method requires that 

the computational domain for the space variable must be [-1, I], For these reasons, 

Landau transformation is modified as

44
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& = Y ~ l - I S & S l  (58)

- I S & S l  (59)

where the space hi each sub-domain is discretized with the help o f Gauss-Lobatto 

collocation points for Chebyshev polynomial:

A n - j )
4lj = c o s  V  J  =  ° *  - • N ’  ( 6 0 )

A n - j )
= 008 JT  ~ J  •  0. •••> N, (61)

In the first stage o f this problem, the liquid region does not exist and phase transition does 

not happen until the free surface temperature gets to the melting temperature. Thus, in the 

first stage, X {t) = 0, the equation (52) is not valid and the equation (59) is replaced by

#s = 7 L' 1 - 1* 6 * 1 (« )

The following dimensionless quantities are used to simplify the governing equations:

r ~ A p L /  q")2 (63)

for liquid region (64)

* ) = j f e  -  T.) for solid region (65)

where a ~ ~  “  thermal difiusivity. In the second stage o f the problem, the interface 

location is non-dimensionalfy represented by:

45

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

(66)

In the first stage o f calculations, non-dimensional versions o f the governing equations, 

corresponding to equations (10)-{13), can be rewritten as

2 f 23 r  3 g  q "zl 

« r te .0 )  = - |(7 ] -T m)

d9s q”lc

4—1 2kL

d 9 s h lc U
*4s 2 k L lc

(67)

(68)

(69)

(70)

The corresponding equations for the second stage o f calculations can be rewritten as 

3 9 L 3 9 *  4 3 9 l dyr & +1
3 t  3 ^ l * y r* * 3 € L d r  yr

3 9 s 39*
3 x

9l (& , 0) = 0 

^ 0 )  =  0 

3 9
V  = -2

4 —1

. 2q"C  3 9 s\

“  ,4U(SH

(71)

(72)

(73)

(74)

(75)

(76)
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d ip ___2 3 9 l

d r  ip d$L ft-i U  
VapLr ¥ )

dOs
#4s & —I

(77)

(78)

0, = 0  in Model I (79-1)

_ ^ 3

m Model n

</ur /jtPi
~ T = ~  '***% a r  ^

(79-2)

The above governing equations are discretized and converted into a system of algebraic 

equations with the procedures described in Chapter 4. Values o f the discretization 

parameters used for different parts o f the problem are discussed in the following sections.

The resulting system o f algebraic equations o f the form

f . a , xT "  -» i /  = 0 ,1,..., V , for n>0 (80)
JM0

are solved by Gauss-Seidel iteration with under-relaxation [25]:

AT .  . ( * )

I’. - ' L oM ']
y-0

(81)

where J is the coefficient matrix, [x̂ "+l)J*) is the unknown variable at the/" collocation

point at time step (n + /) in the It* iteration o f the solver. The following stopping criterion 

is used in the iterative procedure:

x M - x k £10 -10 (82)
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5.2. The Flowchart of Programming

The final step in computer simulation o f a physical problem is to develop and implement 

algorithms hi a computer code [3]. In this study, C language [37] is chosen for its 

powerful functions and its portability to implement the algorithms. The following 

procedures have been adapted in the main program:

I. The calculation o f Chebyshev polynomial and related quantities as implemented by

the function “ChebysSl.”

1.1. Calculation o f Gauss-Lobatto collocation point, zeta.

1.2. Calculation o f trial function, T.

1.3. Calculation o f the first order derivative matrix, D l.

1.4. Calculation o f the second order derivative matrix, D2.

II. Calculation o f transient temperature profiles inside the target for the first stage.

This step is continued until melting starts, Le. 0S( - 1, r)  > 0.

n.l .  Calculation for the initial two time-step: For time = A r and time = 2A t ,

temperature fields in the solid are solved through the method o f predictor- 

corrector (1-step Adams-Bashforth with 0-step Adams-Moulton formulas). The 

calculation is implemented in the function “ex melting AB AMI.”

H.2. Calculation for subsequent time-step: temperature fields for subsequent time steps

are solved through the 3-step Adams-Bashforth method. The calculation is 

repeated over and over again by marching forward in time until the temperature o f 

free surface becomes equal to or more than the melting temperature, 

corresponding to a value o f 0 for 0S( - 1, r ) . These operations are implemented by 

the function “ex_melting_AB3”.

II.3. Calculation o f the exact time when melting starts, and the temperature profile at

that moment: In the process o f computation with a given time interval A r, the

situation at the end of iterations in step II.2 is often as illustrated in Figure 2.
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(0, 0)

4 - l , r w )

Ar

Figure 2

Variation o f #5( - 1, r) With Respect To r  Around The Critical Point 

(The Melting Temperature)

I f  the time interval A r is enough small, it is reasonable that 05( -  l,r )  is a  linear 

function with respect to r  between rM and r (,t+l). Thus, the tim er5 that 

1, r) = 0 is calculated up by linear interpolation:

rs = T{n) -A r* a , ( - l , r w )
0s( - l , r M ) - 0 s ( - l , r {*>)

The corresponding temperature profile at this time t s is determined by

(83)

(84)

where j  is collocation points index. This step is implemented by the function 

“critfcal_pomt”

m . Calculation o f post-melting temperature profiles in the target: For this calculation, 

the tone when melting starts as calculated by the previous step is referred to as

49
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time = 0, and the initial condition is the temperature profile as provided by step 

Q.3. This calculation is continued until temperature at bottom boundary o f target 

gets sufficiently close to the melting temperature, Le. the melt interface is 

sufficiently close to the bottom surface. The calculation is divided into two 

alternative calculations: one for Stefan condition with consideration o f kinetics at 

the interface and the other for kinetics condition at the interface, 

m . l .  When Stefan condition is considered, discrete equations corresponding to 

equations (71)-(72) and (79-1) are used, 

m . 1.1. Calculation for starting time steps: Calculation o f the initial two time steps 

( time = Ar and time = 2Ar)  is performed by 1-step BDs, as implemented by the 

function “Tstep_BDl”.

HI. 1.2. Calculation for subsequent time steps: 3-step BDs is used for the subsequent time 

steps. The algorithm is implemented in the function “TstepJBD3”.

IIL2. When kinetics condition is considered at the interface, discrete equations 

corresponding to equations (71)-(72) and (79-2) are used. Time marching is 

accomplished by BDs. As the matrix created by the governing equations and 

conditions is quite stiff the initial guesses are important for the stability and rate o f 

convergence. A function “inrtializekinetics” is used before each time step to 

preset the temperature profile in liquid region to a  linear function in space. 

m .2.1. Calculation for starting time steps: Calculation o f the initial two time steps 

( time = Ar and time = 2Ar) is performed by 1-step BDs, as implemented by the 

function “Tstep_BD 1 _Kinetics”. 

m .2.2. Calculation for subsequent time steps: 3-step BDs is used for the subsequent time 

steps. The algorithm is implemented in the function “Tstep_BD3_Kinetics”.

Ln the future, the program should be further developed to include (i) more efficient 

methods for solving stiff matrix, and (ii) more physical processes with relevant equations 

in the mathematical models.
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6. RESULTS AND CONCLUSIONS

Laser melting o f a pure von slab is used as a  test case. The thermodynamic properties of 

pure iron and the corresponding test parameters are listed in Table 4.

Table 4

Thermodynamic Properties o f Target (Pure Iron) & Test Parameters

Quantities Units

density, p 7297.0 Kg/m3

specific heat, c 447.0 j /K g - K

thermal conductivity, k 20.0 w /m -K

thermal difiusivity, a 0.226631.5 x 10_,° m2/s

heat transfer coefficient, h 100.0 w/m2 -  K

equilibrium temperature, Te 1211.0 K

ambient temperature, Ta 300.0 K

latent heat, L 247.3 Kj/Kg

target thickness, I 1.0 xlO"3 m

heat flux, q" 2.0x10* w/m2

Solutions for the test are obtained with both non-kinetics condition and kinetics condition, 

and presented as from Figure 9 to 12. In both solutions, a  fixed amount o f time (0.0125s, 

Figure 12, as obtained from calculation in step II) is needed before the hot surface 

temperature, and the melting interface starts moving.
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With either condition, only a portion o f the incident laser energy is conducted to the 

interface through the liquid layer, while the rest is used to raise temperature o f the existing 

liquid. A part o f the heat that reaches the interface is diffused into the solid, while the rest 

is used in melting and moving the interface. With kinetics condition, not only the heat 

necessary for melting is to be transported to the interface, but also some additional heat is 

needed to raise the interface temperature above the melting temperature. As a result, the 

interface moves slower with kinetics condition, and the interface temperature is always 

above the melting temperature during melting (Figures 9 and 10). In other words, the 

interface has to be always superheated before melting can occur. Under equilibrium (Le. 

Stefan) condition, the superheat is so minimal, that in all practical calculations the 

superheat can be neglected and the interface can be considered to be at the equilibrium 

melting temperature.

S (mm)

1 1
0.9 -j
0.8 -j
0.7 -|t
0.6 1
0.5 -j
0.4 -j without Kinetics condition^*^

0.3 -j
0.2 1 
0.1 -I

with Kinetics condition

0 ---------- ■---------- .---- ----------- ,---------- .---------- ;---------- . Time (s)
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

Figure 9

Change in Melting Interface Location with Time
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The free surface temperature is also higher with kinetics condition than that with Stefan 

condition. The difference in location o f melt interface between the two cases is the 

smallest right after melting starts. This difference gradually increases until the heat flow 

through the interface starts to be affected by the back surface beat transfer, and the 

difference starts decreasing again (Figure 9). The difference in interface temperature 

between the two cases continuously grows with time (Figure 10), so does the difference in 

free surface temperature (Figure 11). The differences in temperature profile also increase 

with time (Figure 12). Since the interface movement is slower in the case with kinetics 

condition, the kink (or discontinuity m slope) at the interface is less prominent for the case 

with the kinetics condition (Figure 12).

Temperature (K)

2000 ij
1980 -j

1
1960 -{j
1940 -j

1920 -I|
1900 -I
1880 -j
1860 -j
1840 -j
1820 U

a --------
1800 -i---------- :---------

with Kinetics condition 3-5 3 1 1P

without Kinetics condition
 ,------------ ,------------  ,------------. T im e(s)

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

Figure 10

Change in Melt Interface Temperature with time
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Temperature (k)
with Kinetics conditon

2600 4 KIneics condition

1800 4 melting starts at T=1811 K
1600 ->

600 4
initial temperature 300 K

Time (s)
0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

Figure 11

Change in Free Surface Temperature with Time

3000

Temperature (K) (without Kinetics condition : solid lines, 
with Kinetics condition : dashed lines 
Curves 1 , 2 , 3  are identical between the two cases)

location of interface (fnm) 
Non-Kinetics Kinetics

7. at t = 0 0384 e 0 .6356 0.6323

6, 0,0302 g 0,37.19. ■ .Qt3$93

5. at t»  0.0203 s 0.1297 0.1203
4. at t»  0.0151s 0.032 0.0250
H H -affltt! -ftWHmltt)
1, aUx-P,QQ$2 g 
X  (mm)

Figure 12 

2-Phase Temperature Profiles
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At high laser power density, and depending on the material properties, the kinetics 

condition can become important. I f  kinetics condition is not used, the moving interface 

location is over-predicted and the free surface temperature is under-predicted. Both of 

these two factors may have important consequences in different laser processing 

techniques, such as laser annealing, laser machining and PLD. For example, in laser 

annealing where the amount o f superheating determines the micro structure o f the annealed 

solid, the computation must consider the kinetics condition [4].
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/*■

The Program fo r  Graduate Thesis:
"Numerical Simulation o f Laser Ablation in Pulsed Laser Deposition Process"

by Zhaohui Wei 
in

Department o f  Mechanical Engineering o f  The University o f South Alabama
fo r

A Master's degree in Mechanical Engineering 
Fall 1997

-------------------------------------------------------------------------------------------------------------------------------- V
#include <stdio.h>
#include <stdlib.b>
#include <math.h>
#include <time.h>
/* Computational parameters */
/♦  * /
#defme M 24 
^define dt 0.001 
#define tolerance 0.0000000001 
/*
Material: pure iron

/* ---------------- array size */
/* ----------------- time step */

Density: d  = 7897 kg/m1
Specific heat in liquid: Cl = 447 j/kg-k
Specific heat in solid: Cs = 447 j/kg-k
Thermal conductivity in liquid: a =80 w/m-k
Thermal conductivity in solid: Ks = 80 w/m-k
Thermal dijfusivity in liquid: al = 0.00002266315 mVs
Thermal difiiisivity in solid: as = 0.00002266315 m2/s
Heat transfer coefficient: h = 100 w/m-k
Air temperature: Ta = 300 k
Melting temperature: Tm = 1811 k
Latent heat: L =247300 fikg
Material length I = 0.001 m
Heatflux: q " =200000000 w/m2 */

#defineTm 1811.0 /* k melting temperature */
#defineTa 300.0 /* k air temperature */
#define TIME 0.0021608907 /* s, time dimensionless

#define SPACE 0.0002212975 /* m,
= al*square(d*L/q") */ 
space dimensionless = al*d*L/q" */

#defineTL 553.24385 /*k, tenqierature dimensionless = L/Cl*/
#defineTS 553.24385 /*k, temperature dimensionless -  L/Cs*/
#define length 0.001 /* m */
#defineg 0.1958821 /* 4*as*TIME/0*0 *l
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#define gl 1250.0 /* q"*l/(2*k) */
#defineg2 0.000625 I* h*l/(2*k) */
#define AA 1.0 1* dimensionless, al/as */
#define BB 4.5188036 /* dimensionless, (i*q")/(al*d*L) */
#defineCC 7230.0849 /* dnnensionless, (2*q"*Cs)/(h*L) ♦/
#defineIL -2.7311646 /* dimensionless, (Ta-Tm)*cl/L */
#define IS -2.7311646 /* dimensionless, (Ta-Tm)*cs/L */
#define KV 48840.46638
#define KG 9.05
#define KH 1.086
/* .

Subroutine Functions
 * /
typedef double FTYPE;

void ChebySl(int N, FTYPE x[M], FTYPE T[M][M], FTYPE D1[M][M],
FTYPE D2(MJ[M]); 

void solve_equation(FILE *fpr, int method, intN , int *iter, FTYPE relax,
FTYPE a[M][M], FTYPE c[M ]JTYPE U[M]); 

void scate_lin_system(mt N, FTYPE a[M][M], FTYPE c[M]); 
void print_message(int N, FILE *fpr);
void print_vector(int N, char *Str, FILE *fpr, FTYPE vector[M]); 
void print_matrix(int N, char *Str, FILE *fpr, FTYPE matrix[M][M]); 
void print_ex_rnelt(int N, int n, FILE *fpr, FTYPE x[M], FTYPE US[6][M]); 
void print resuh(int N, int n, FILE *fpr, FTYPE x[M], FTYPE psi[6],

FTYPE Dpsi[6], FTYPE UL[6][M], FTYPE US[6][M], FTYPE nt);
/*----------------------------------------------------------------------------------------------------------V
void ex_melting_AB_AMl(int N, into, int approach, FTYPE x[M], FTYPE D1[M][M], 

FTYPE D2[M](M], FTYPE US[6][M], FILE *^r); 
void ex_melting_AB3(int N, FTYPE x(M], FTYPE D1[M][M], FTYPE D2[M][M], 

FTYPE US[6][M], FILE *fpr); 
void critical_point(int N, int n, FTYPE x[M], FTYPE US[6][M], FILE *^r);

/*♦** SPECIAL SUBROUTINE FUNCTIONS IN MODEL I  WITHOUT 
CONSIDERATION OF INFLUENCE OF KINETICS IN PHASE 
TRANSITION •***/

void TStep BDl(int N, int n, FTYPE relax, FILE *fpr,
FTYPE x[M], FTYPE D1[M][M], FTYPE D2[M][M], FTYPE psi[M],
FTYPE Dpsi|M], FTYPE UL[6][M], FTYPE US[6][M]); 

void TStepJBD3(mt N, FTYPE relax, FILE *fpr, FTYPE x(M], FTYPE D1[M][M], 
FTYPE D2[M](MJ, FTYPE psi[M], FTYPE Dpsi(M], FTYPE UL[6][M],
FTYPE US[6][M1); 

void end_melt(int N, int n, FTYPE x[M], FTYPE psi[M], FTYPE Dpsi[M],
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FTYPE UL[6][M], FTYPE US[6][M], FILE *fpr);
/♦*** SPECIAL SUBROUTINE FUNCTIONS IN MODEL U  WITH 

CONSIDERATION OF INFLUENCE OF KINETICS IN PHASE 
TRANSITION ***♦/

void initializejdnetics(int N, int a, FILE *fpr, FTYPE x[M], FTYPE D1[M][M],
FTYPE D2[M][M], FTYPE psi[M], FTYPE Dpsi[M], FTYPE UL[6][M], 
FTYPE US[6][M]); 

void TStep_BD l_Kinetics(int N, int n, FTYPE relax, FILE *fpr, FTYPE x[M],
FTYPE DI[M][M], FTYPE D2(MJ[M], FTYPE psi[M], FTYPE Dpsi[M], 
FTYPE UL[6][M], FTYPE US[6][M]); 

void TStep_BD3_Kinetics(int N, FTYPE relax, FILE *fpr, FTYPE x[M],
FTYPE DI[M][M], FTYPE D2[M][M], FTYPE psi[M],
FTYPE Dpsi[M], FTYPE UL[6][M], FTYPE US[6][M]);

/* ---------------------------------------------------------------------------------------------------------------------------------
xfi], the Gauss-Lobatto points on [-1,1]
T[i]{j], ith trial function (Chebyshev poly, o f the fir s t kind) at jth  point
D l[i][j], dU/dx @ x[i] *  sum J(D l[i][j]*U j) '.exactfor Polyn. up to degree=N
D2[i][f], d2U/dx2 @ x[i] = sum J(D 2[i][f]*U j) .exactfo r Polyn. up to degree=N
TStep_BD3, third-order backwards differentiation

Main program
 * /

intmainO
{

int n, nn, N, melt, approach;
FTYPE zeta[M], T[M][M], D1[M][M], D2[M][M];
FTYPE psi[6], Dpsi[6], UL[6][M], US[6][M], f[6][M];
FTYPE relax, nt;
time_t ti;
FILE *fout;
fout =  fopen("data.txt", "w");
relax =  0.1;
printf("Enter the order N, (N should be less than %d) N  =", M-3); 
scan^"%d", &N);
ChebySl(N, zeta, T, D l, D2); 
print_message(N, fout);

/*
print_vector(N, "Gauss-Lobatto point", fout, zeta); 
print_matrix(N, "Trialfunction Tk(xf)",fout, T); 
print_matrix(N, "1-order derivative D l", fout, D l);
print_matrix(N, "2-order derivative D2", fout, D2); */
n = 0;
approach= 0; 
do
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mr=n;
if(ir= 01 | q%200=0) 
print_ex_melt(N, n, fout, zeta, US); 
if(n<=l)
ex_melting_AB_AM 1 (N, n, approach, zeta, D l, D2, US, fout); 
else
ex_meiting_AB3(N, zeta, D l, D2, US, fout);
it++;
if(n>=3)
nn=3;
if  (US[nn][0]>=Tm)
{

critical_point(N, n, zeta, US, fout);
nt=US[0][N+l];
me!t=l;/* break*/

} while (melt!=l); 
tr=0;

/*
THE FOLLOWING LOOPS ARE USED IN  MODEL I  AND MODEL U, 
RESPECTIVELY. BE ATTENTION IN  RUNNING THIS PROGRAM, 
THERE IS  ONLY ONE LOOP M AYBE ACTIVTTED TO BE RUN  
WHILE ANOTHER LOOP M AY NOT BE STATIONARY, NAMELY,
NO TWO LOOPS CAN BE RUN A T THE SAME TIME.

/***♦ SPECIAL LOOP IN  MODEL I  WITHOUT CONSIDERATION OF 
INFLUENCE OF KINETICS IN  PHASE TRANSITION

/*  do 
{

i f  (n<3)
TStep_BDl(N, n, relax, fout, zeta, D l, D2, psi, Dpsi, UL, US);

else
TStepJBD3(N, relax, fo u t, zeta, D l, D2, psi, Dpsi, UL, US); 
time(&ti);
printfC% d %s\n", n, ctime(&ti) );
i f  (n==01| (n+l)%100==0)
print_result(N, n,fout, zeta, psi, Dpsi, UL, US, nt);
«++,*
}while((n<5) || (US[3][N]<(-1.0/TS)));

/***♦ SPECIAL LOOP IN  MODEL H  WITH CONSIDERATION OF  
INFLUENCE OF KINETICS IN  PHASE TRANSITION
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{
if(n<3)

TStep_BD l_Kinetics(N, n, relax, fout, zeta, D l, D2, psi, Dpsi, UL, US);
else

TStep_BD3_Kinetics(N, relax, fout, zeta, D l, D2, psi, Dpsi, UL, US); 
time(&ti);
printf("%d %s\n", n, ctime(&ti)); 
if(n= 01 | n%200=0)
{

print_resuh(N, n, fout, zeta, psi, Dpsi, UL, US, nt); 
fflush(fout);

}
n+-f-;

}white((ti<5) || (US[3][N]<(-0.1/TS))); 
return 0;

/*  -  function —
  ♦ /
void ChebySl(int N, FTYPE x[M], FTYPE T[M][M], FTYPE D1[M][M], FTYPE 

D2[M][M])
{

int i, j, k;
FTYPE c[M];
FTYPE a[M][M], al[M ][M ], a2[M][M];

/*  initialization to 0; particularly important is the initialization o f
al[N + l][j], al[NJU], a2[N+l][j], a2[N][j] */
for (i=N; i<N+2; FH-)
{

for (j=0;j<=N+2;j++)
{

al[i)[j]=0.0;
a2HD]=0.0;

}
}

/*  calculation o f Gauss-Lobatto points and values o f Cheby. functions a t those points */ 
for (f=0; i<=N; i++)
{

for 0=0; j<=N; j-H-)
{

THD]=cos(M_PI*(FTYPE) i*( 1.0-(FTYPE) j/(FTYPE) N));
}
x[i]=cos(M_PI*( 1.0-(FTYPE) i/(FTYPE) N)); /*  calculation o f x jV
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/*  internal arrays and matrices needed fo r calculation d l and d2 matrices 
c[N]=2.0; 
c[0]=2.0; 
for (k=l; k<N; k++)
{

c[k]=i.O;
for (k=0; k<=N; k++)
{

for (j=0;j<=N; j++)
{

aM  D]=T[k] [j]*2.0/(N*c[k] *c[j]);
}

}
for (k=N; k>=l; k~)
{

for (j=0;j<=N;j++)
{

a l [k-1 ] D]=(a l [k+1 ] [j]+2*k*a[k] [j])/c[k-1 ]; 
a2[k-l][j]=(a2[k+l][n+2*k*al[k][j])/c[k-l];

}
}

/*  d l and d2 needed to calculate 1 & 2-order deriv o f U(x,t) w .r.tx  
for (H ); i<=N; H-+)
{

for (k=0; k<=N; k++)
{

for (j=0;j<=N; j++)
{

Dl[i][k]=D 1 [i][k]+al Q][k]*T[j][i]; /* to calculate 1st deriv. 
D2[i][k]=D2[i][k]+a2(j][k]*T[i][i]; /* to calculate 2nd deriv.

}
}

}
return;

} /* End void ChebySl */

void print_message(int N, FILE *fpr)
{

fprintf^fpr, "collcation points number, N -  %d\n", N); 
fprintfl^tr, "time step, dt =  %4.3e\n", dt);
fyrintflfpr, "Tolerance=%3.2e\n\n", tolerance);
fprintf(4)r,"— ------------------------------------------------------ \n");
fprintf(fpr, "material: pure iron \n");
f|>rintf(4>r, "length: 1 = 0.001 m \n );

64

JtV

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

fprintf(fpr, "melting Temperature: Tm =1811 k Vn"); 
fprinti(f|)r, "air temperature: Ta = 300 k \n");
fprintf($}r, "heat flux: q = 200000000 w/m2 \n");
fprmtf(fj)r, "----------------------------------------------- —---- —  \n");
return;

void print_vector(int N, char *Str, FILE *fpr, FTYPE vector[M])
{

int i,j;
int block, max; 
max=5; 
block=N/6; 
fprintf(fpr, "\n\n"); 
fjjrint^fpr, "%s :\n", Str);
fprintfl^r, "-----------------— --------------------------------------- \n");
for (1=0; i<=block; i++)
{

if ((N%6)<=max && i=bIock)
max=N%6;
fprintf(fpr," ");
for (j=0; j<=max; j++)
{

fprintf[fpr," x%2d ", j+i*6);
}
fprintf(fpr, "\n");
Q)rintf(§)r," ");
for (j=0; j<=max; j++)
{

fprintf(fpr,"% 11.4e ", vector[j+i*6]);
}
fprintf(fpr, "\n\n");

}
return;

void print_matrix(int N, char *Str, FILE *fpr, double matrix(M][M])
{

int i, j, k;
int block, m ax;
max=5;
block=N/6;
fprintf(fpr, "\n\n");
fj)rintf(fpr, "%s\n", Str);
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fprintfCfpr,"-------------------------------------------------------------Vn");
for (i=0; i<=bk>ck; i++)
{

if  ((N%6)<=max && i=bIock) 
maxr=N%6; 
fcrmtflfpr," "); 
for (j=0; j<=max; j++)
{

fprintf(fpr," C%2d ",j+i*6);
}

fprintf(fpr, "to"); 
for 0=0; j<=N; j++)
{

fprintf(fpr, "R%2d ",j); 
for (k=0; k<=max; k++)
{

fprintf(fpr, "% ll.4e ", matrix0][k+i*6]);
}
fprintf(fpr, "to");
}

fprint^fpr, "to");
}
return;

}

void print_result(int N, int n, FILE *fpr, FTYPE x[M], FTYPE psi[6],
FTYPE Dpsi[6], FTYPE UL[6][M], FTYPE US[6][M], FTYPE nt)

{
in ti,];
if (fi>3) i=3; 
else p=n;
fprintflfpr, "\n\n------------------------------------------- U(%<U)to",
fprinrf(4)r, "psi[#/od] = %12.6e Dpsi[%d] = %12.6e\n", irH , psipH ], nM ,Dpsipf 1]);
fprintf(fpr, "Time =% 12.6es ", (dt*(aH)+iit)*TIME);
fprintf(fpr, "front S = %12.6e mmtoto",psipM]*SPACE*lOOO.O);
fprintf(fpr, "CoL Space z (mm) Temperature, Temp.toto");
for (j=0; j<=N; j++)
{

fprintf(fcr, "%2d, %11.4e %18.10e %18.10e\n",
j, (xpJ+1.0)*psi[i+l]*SPACE*1000.0/2.0, UL[i+l][j]*TL+Tm, UL[i+l](j]);

}
for 0=0; j<=N; j++)
{

fprintf(fpr, "%2d, %11.4e %18.10e %18.10e\n",j+N,
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(x(j]+ l.0)*(Iength*psi[i+l]*SPACE)*1000.0/2.0+psi[i+l]*SPACE* 1000.0, 
US[i-t-l][j]*TS+Tm, US[i+l]Q]);

}
/*

fprintf(fpr, "\nTime -  % 12.6es " (dt*(n+l) +nt) TIM E); 
fprintfffpr, "S = %12.6e nan ”,psi[i+l]*SPACE*1000.0); 
fprintftfpr, Tem p  = %16.8e", UL[i+l][0]*TL+Tm);

*/
return;

}

void printex meh(int N, int n, FILE *fpr, FTYPE x[M], FTYPE US[6][M])
{

rati, nn; 
nn=n;

if(n==0)
{

for (H ); i<=N; t++)
{

US[0][i>Ta;
}

}
if(n>=3)
n=3;
fprintfffpr, "\n\n-------------------------------------------- U(%dpc)\n", nn);
fprintfffpr, "Time =  %l2.6e s\n", dt*(nn)*TIME); 
fi>rintfffi>r, "CoL Space o f z (mm) Temperature\n\n");

for (1=0; i<=N; i++)
{

fprintfffpr, "°/o2d, %11.4e %20.12e\n",
i, (x[i>1.0)*length*1000.0/2.0, US[n][i]);

}
/*

fprintfffpr, "\nTime = %12.6e s ", dt*nn*TIME); 
fprmtffffcw, "Temp = %16.8e", US[n][0]);

*/
return;

}

void solve_equation(FILE *fpr, int method, int N, int *piter, FTYPE relax,
FTYPE a[M][M], FTYPE c[M],FTYPE U[M])

{
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int j, k, count, kount;
FTYPE UG[M], suml, sum2;
FTYPE sum_f4; 
icount = 0 ; 
do
{

if ((N > 10) && ((kount % 10000) =  0))
fprintf(fpr, "step: % d, interfece: %14.4e\n", icount, U[7]) ;

-H-fcount;
for (k=0; k<=N; k-H-)
{

UG[k]=U[k];
}

for (j=0; j<=N; j++)
{

suml =0.0; 
sum2=0.0; 

for (k=0; k<j; k++)

suml =suml +a[j] [k] *U[k];
}
for (k=j; k<=N; k-H-)
{

sum2=sum2+a|j][k]*U[k];
}
U[J|=U[j]+relax*(c[j]-suml -sum2ya|j] [j];

}
count=0;
for (k=0; k<=N; k-H-)
{

if (febs((U[k]-UG[k])/U[k])<=tolerance) 
count=count+l;

if(m ethod= l)
suml=suml+a|j]I]k]*UG|lc];

if (m ethod=2) /*  Jacobi method

/*  Gauss-Seidel method */

*/

if  ( kount =  (*piter) )
b reak ;

} while (count!=N+l); 
*piter = kount; 
return;

/* exit the innermost enclosing loop */
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void sealsJm  system(int N, FTYPE a[M][M], FTYPE c[M])
{

mt j, k;
FTYPE largest;

for 0=0; j<=N; j++)
{

largest = a[j][0]; 
for (k=l; k<=N; k++)
{

if (febs(a{j][k]) > fabs(largest)) 
largest=a[j][k];

}
for (k=0; k<=N; k++)
{

aQ] [k]=aQ] [k]/largest;
}
c[j]=c[j]/largest;

}
return;

void ex_melting_AB_AMl(int N, int n, int approach, FTYPE x[M], FTYPE D1[M][M], 
FTYPE D2[M](M], FTYPE US[6][M], FILE *fpr)

{
int j,k , judge;
FTYPE suml, sum2;
FTYPE Uc[M], f[M], Tp, Tc; 
if (hf=0 && approach==0)
{

for (3=0; j<=N; j-H -)
{

US[0][j]=Ta;
}

}
for(j=I;j<N;j-H-)
{

f[fl=0.0;
for (k=0; k<=N; k-H-)
{

fffl=f[fl+g*D2[fl[k]*US[n][k];
}
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}
for (j=l; j<N; j++)
{

US[o+l][j]=US[n][fl+dt*fO];
}
suml =0.0; 
sum2=0.0; 
for 0=1; j<N; j-H-)
{

sumI=suml+Dl[N]D]*US[n+l]Ij]; 
sum2=sum2+D 1 [0][j]*US[ttM][fl;

}
US[n+lJ[N]=g2*Ta-suml-KDipsn[0]/Dl[0][0])*Cgl+suin2); 
US[n+l](N]=US[m-l][N]/(Dl[N][N]+g2 -Dl[N][0 ]*Dl[0 ][N]/Dl[0 ][0 ]); 
US[afl][0H-gl-sum 2-Dl[0][N]*UStiH 'l][N])/Dl[0][0]; 
fo r 0=0; j<=N; j-H -)
{

Uc0]=US[n+l]0];
}
do
{

for 0=0; j<=N; j-H-)
{

US[n+l][j]=Uc[j];
}
for 0=1; j<N;j++)
{

f[j]=0.0;
for (k=0; k<=N; k++)
{

fK=ffl+g*D2[fl[k]*US[ttM][k];
}

}
for 0=l;,j<N; j-H -)
{

Uc0]=US[n][fl+dt*fO];
}
suml =0.0; 
sum2=0.0; 
for(j=l;j<N ;]++)
{

suml=suml+Dl[N][j]*Uc[j];
sum2=sum2+Dl[0][j]*Uc[n;

}
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Uc[N]=!g2*Ta-suml+(Dl[N][0]/Dl[0][0])*(gl+suin2); 
Uc[N]=Uc[N]/(D 1 [N][N]+g2-Dl[N][0]*D 1 [0][N]/D 1 [0][0]); 
Uc[0H-gl-sum2-Dl[0][N]*Uc[N])/Dl[0][0]; 
judge=0;
for (f=0;j<=N;j++)
{

Tc=Uc[j];
Tp=US[n+l][j];

if ( ((febs(Tp)<=(tolerance) && fabs(Tc)<=(tolerance))
[| (fabs(Tc)> (tolerance)
&& fabs(Tp)> (tolerance)
&& fobs((Tc>Tp)/Tc)<tolerance)
|| (fabs(Tp)>= (tolerance)
&& fobs(Tc)<= (tolerance)
&& febs((Tc-Tp)/Tp)<tolerance)
|| (fobs(Tc)>= (tolerance)
&& febs(Tp)<= (tolerance)
&& fabs((Tc-Tp)/Tc)<tolerance)))

judge=judge+l;
}

} while (judge!=N+l); 
return;

void ex_mefting_AB3(int N, FTYPE x[Ml, FTYPE D1[M][M], FTYPE D2[M][M], 
FTYPE US[6][M], FILE *fpr)

{
int j,k , judge;
FTYPE suml, sum2;
FTYPE Uc[M], f[5][M], Tp, Tc; 
for (j= l; j<N; j++)
{

ftO]0]=O.O;
f[l][j]=0.0; 
«2JO]=0.0;
for (k=0; k<=N; k-H-)
{

f[0][j]=f[0]D]+g*D2D][k]*US[0][k];
f ll]M l]b W D 2 0 W U S [ l] [k ] ;
fl2][j]=f[2][j]+g*D2[j][k]*US[2][k];

}
}
fo r ( j= l; j< N ; j+ + )
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{
US[3][j]=US[2][j]+dt*(23.0*f[2]0]-16.0*f[l](j]+5.0*f[0][j])/12.0;

}
sum! =0.0; 
sum2=0.0; 
for(j= I; j<N; j - H - )

{
sumI=suml+Dl[N][j]*US[3][i];
sum2=sum2+Dl[0][fl*US[3]0];

}
US[3][N]=g2*Ta-suml+(DllN][0]/Dl[0][0])*(gl+suni2);
US[3][N]=US[3][N]/(Dl[N][N]+g2-Dl[N][0]*Dl[0][N]/Dl[0][0]);
US [3 ] [0]=(-g 1 -sum2-D 1 [0] [N] *US[3 ] [N])/D 1 [0] [0]; 
for 0=0; j<=N; j++)
{

Uc[fl=US[3][fl;
}
do
{

fo r (j= 0;j< = N ;j-H -)
{

US[3](j]=Uc(j];
}
for (j= l; j<N ; j-H-)
{

f[3]D]=0.0;
for (k=0; k<=N; k++)
{

f[3][fl=f[3]D]+g*D2D][k]*US[3][k];
}

}
for (j= l; j<N; j++)
{

Uc[j]=US[2][j]+dt*(9.0*f[3][j]-i-19.0*f[2][j]-5.0*f[l][j]+f[0][j])/24.0;
}
suml =0.0; 
sum2=0.0;
forO=sl;j<N ;j++)
{

suml=suml+Dl[N][fl*Uc|j];
sum2=sum2+Dl[0]|j]*Uc[j];

}
Uc[N]=g2*Ta-suml+(Dl[N][0]/Dl[0][0])*(gl+sum2); 
Uc[N]=Uc[N]/(D 1 [N][N]+g2-D 1 [N] [0] *D 1 [0] [N]/D 1 [0] [0]);
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Uc[OK-gl-sum2-Dl[0][N]*Uc[N])/Dl[0][0];
judge=0;
for (j=0;j<=N; j-H-)
{

Tc=Uc[j];
Tp=US[3](J);
if  (  ((febs(Tp)<=(toterance) && fabs(Tc)<=(toterance))

([ (fabs(Tc)> (tolerance)
&& fabs(Tp)> (tolerance)
&& fabs((Tc-Tp)/Tc)<tolerance)
|[ (febs(Tp)>= (tolerance)
&& febs(Tc)<= (tolerance)
&& fabs((Tc-Tp)/Tp)<tolerance)
|| (febs(Tc)>= (tolerance)
&&. febs(Tp)<= (tolerance)
&& fabs((Tc-Tp)/Tc)<toIeranee))) 
judge=judge+l;

}
} while (judge!=N+l); 
for(j=0; j<=N; j++)
{

US[0]D]=US[l][fl;
US[l][fl=USC2]0];
US[2](j]=US[3](j];

}
return;

}

void critical_point(int N, int n, FTYPE x[M], FTYPE US[6][M], FILE *fpr)
{

int j;
FTYPE ratio, timejmelt; 
ratio=(Tm-US[l][0])/(US[2][0]-US[l][0]); 
time_melt=(n- l)*dt+dt*ratio;
US[0][N+I]=time_ineh; 
for (j=0; j<=N; j++)
{

US[2][j]=US[l][j]+(US[2][j]-US[l]0])*ratio;
}
fprintf(fpr, "\n\n-------------------------------------------- U(%<Lx)\n", n);
fprintf(f[jr, "Tune = %14.6e s\n", tunejmelt’ TIME);
Q>rint̂ Q>r, "CoL Space o f z (nun) Temperature\n\n"); 
for (j=0;j<=N;j-H-)
{
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fprintfffpr, "%2d, %11.4e %14.6e\n",
j, (x[j]+1.0)*Iength*1000.0/2.0, US[2][fl);

}
for (j=0; j<=N; j++)
{

US[0]jj]=(US[2][j]-Tin)/TS; /*  the initial cond. o f 2-phase problem */
}
return;

void TStep_BDl_Kinetics(mt N, into, FTYPE relax, FILE *fpr, FTYPE x[M],
FTYPE D1[M][M], FTYPE D2[M][M], FTYPE psi[M], FTYPE DpsiTM],
FTYPE UL[6][M], FTYPE US[6][M])

{
int j, k, method, count, iter, isjconverged, isjinear;
FTYPE aS[M][M], aL[M][M], cS(M], cL(M], USoldfM], delta;
FTYPE Ui, Uiold;
FTYPE srelax, Irelax; 
srelax=relax; 
lrelax=1.0;
is_converged=0 'J* false */
is_linear=l; /*  initially, a  linear profile is assumed fo r  UL. Only after

convergence is reached with linear profile, the UL system  
o f equations is actually solved */

initializeJdnetics(N, n, fpr, x, D l, D2, psi, Dpsi, UL, U S);
Ui=US[rrf-l][0]; 
count=0; 
do 
{

count++;
cS[0]=0.0;

for (k=0; k<=N; k++)
{

aS[0][k]=2.0*D 1 [0] [k]/((BB-psi[rri-l ])*AA); 
cS[0]=cS[0]+Dl[N][k]*UL[n+l][k];

}
cS[0]=2.0*cS[0]/psi[n+l]+Dpsi[n+l];

for (j=l; j<N; j++)
{

for (k=0; k<=N; k++)
{

if 0 = 4 0  deha=l.O; 
else delta=0.0;
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aS [j] [k]=deha+dt*D 1 [j] [k] *(x[j]-1.0) *Dpsi[n+1 ]/(BB-psi[n+l ]) 
-dt*4.0*D2[j][k]/((BB-psi[n+l])*(BB-psi[n+l])*AA);

}
cSD]=US[n]tfl;

}
for (k=0; k<=N; k++)
{

aS[N] [k]=CC*Dl [N] [k]/((BB-psi[n+l ])* AA); /* aS(NJc) */
}
aS|N][N]=aS[N][N]+l.O;
cS[N]=IS;
for (k=0; k<=N; k++)
{

USokl[k] = U S[n+l][k];
}
scale_lm_system(N, aS, cS);
method=l; iter=0; /*  Gauss-Seidel method */
solve_equation(fpr, method, N, &iter, srelax, aS, cS, US[n+l]);
Uioki=Ui;
Ur= Uiold * (1.0-lrelax)+lreIax*US[n+l][0];
UL[o+l][N]=Ui; 
for (k=0; k<=N; k++)
{

US[a^-l][k]=C1.0-Irelax)*USold[k]+lrelax*US[n-t-l][k];
}
Dpsi[n+1 ]=KV*exp(-KG*Tin/(Ui*TL+Tm));
Dpsi[tt+l]=Dpsi(n+l]*(l .0-exp(-KH*Ui*TS/Tm)); 
psi[n+l]=dt*Dpsi[n-f-l];
is_converged=(fobs((Ui - Uiokl)/Ui)<= 0.0005);

/*  convergence is checked However, this convergence is not the true one 
i f  this convergence was reached with an assumed linear profile fo r  UL */ 

if  (is linear)
{

if(is_converged)
{

is_linear= 0 ;
(relax = 0.01; 
isjconverged = 0 ;

}
else
{

UL[n+l][0]=UL[tt+l][N]+psi[tt4-l]; 

for (j=0; j<=N; j++)
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{
UL[n+l]D]='0.5*psi[n+l]*(x[j]-1.0)+UL[a+l][N];

}
}

}
if ((!is_Iinear) && (!is_converged))
{

for (k=0; k<=N; k-H-)
{

aL[0][k]=Dl[0][k];
}
cL[0]=-0.5*psi[n-(T];
for(H ;j< N ;j+ +)
{

for (k=0; k<=N; k++)
{

if(j= k ) defta-1.0;
else delta=0.0;
aL[j][k]=deIta - dt*Dl[j][k]*(x[fl+LO)*Dpsi[n+l]/psi[tt+l]

- dt*4.0*D2[j][k]/(psi[iMT]*psi[iMT]);
}
cL(j]=UL[n][j];

}
for (j=0; j<N;j++)
{

cL[j]=cL[j]-aL[j][N]*Ui;
}
scale_lin_system(N-1, aL, cL);
method=l; iter=0; /*  Gauss-Seidel method */
solve_equation(fpr, method, N -l, &iter, srelax, aL, cL, UL[itfT]);

}
} white (!is_converged); 
return;

void TStep_BD3_Kinetks(int N, FTYPE relax, FILE *$r,
FTYPE x[M], FTYPE DI[M][M], FTYPE D2[M][M], FTYPE psi[M], 
FTYPE DpsifM], FTYPE UL[6][M], FTYPE US[6][M])

{
int n, j, k, method, count, iter, is_converged, isjinear;
FTYPE aS(M][M], aL[M][M], cS[M], cL(M], USokl[M], delta;
FTYPE Ui, Uiold;
FTYPE sum, srelax, Irelax; 
srelax=relax;
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Irelax=1.0;
is_converged=0 j*  false *1
is_Iinear=l
n=3;
initialize_kinetics(N, n, fpr, x, D l, D2, psi, Dpsi, UL, U S );
Ui=US[4][0];
psi[4]=18.0*psi[3]-9.0*psi[2]+2.0*psi[l]; 
psi[4]=(psi[4]+6.0*dt*Dpsi[4])/l 1.0; 
count=0; 
do
{

count++;
cS[0]=0.0;
for (k=0; k<=N; k++)
{

aS[0][k]=2.0*Dl[0][k]/(CBB-psi[4])*AA); /* aS(OJc) */
cS[0]=cS[0]+Dl[N][k]*UL[4][k];

}
cS[0]=2.0*cS[0]/psi[4]+Dpsi[4];

forQ=l;j<N;j++)
{

for (k=0; k<=N; k++)
{

if(j= k ) deka=1.0; 
else delta=0.0;
aS[j][k]=delta-K6.0/l l.0)*dt*D 1 D][k]*(x[j]-1.0)*Dpsi[4]/(BB-psi[4]) 

<6.0/11.0)*dt*4.0*D2[j][k]/((BB-psi[4])*(BB-psi[4])*AA);
}
cS[j]=(18.0*US[3][j]-9.0*US[2]|j]+2.0*US[l][j])/11.0;

}
for (k=0; k<=N; k++)
{

aS[N][k]=CC*D 1 [N] [k]/((BB-psi[4])*AA);
}
aSfN][N]=aS[N][N]+l .0; 

cS[N]=IS;
for (lc=0; k<=N; k-H-)
{

USoldjk] = U S[4][k];
}
scale_lin_system(N, aS, cS);
methodr'l; iter=0; /*  Gauss-Seidel method */
sotve_equation(fpr, method, N, &iter, srelax, aS, cS, US[4]);
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Uiold=Ui;
Ui= Uk>ki*(l .0-lrelax)+lrelax*US[4][0];
U L [4][N ]=U t; 
for (k=0; k<=N; k -H - )

{
US[4][k]=(1.0-lrelax)*USokipc]+IreIax*US[4](k];

}
Dpsi[4]=KV*exp(-KG*Tm/(Ui*TL-f-Tm»; 
Dpsi[4J=Dpsi(4]*(L0-cxp(-KH*Ui*TS/rm)); 
psi[4]=l8.0*psi[3]-9.0*psi[2]+2.0*psi[l]; 
psi[4]=(psi[4]-H6.0*dt*Dpsi[4])/l 1.0; 
is_converged=(fabs((Ui - Uioki)/Ui)<= 0.0005); 
if (is_Iinear)
{
if (isconverged)
{

is Jm ear = 0 ;
Irelax = 0 .01; 
is converged = 0 ;

}
else
{

UL[4][0]=UL[4][N]+psi[4]; 
for (j=0; j<=N; j - H - )

{
UL[4][j]=-0.5*psi[4]*(x[j]-1.0)+UL[4][N];

}
}

}
if ((!is_linear) && (!is_converged))
{

for (lc=0; k<=N; k++)
{

aL[0][k]=D I [0] [kfj;
}
cL[0]=-0.5*psi[4];
for(rl;j<N;j+4-)

{
for (k=0; k<=N; k++)
{

if(j= k ) delta=1.0;
else deka=0.0;

aLD][k]=delta-(6.0/11.0)*dt*DIO][k]*(xO]+1.0)*Dpsi[4]/psi[4]
-<6.0/11.0)*dt*4.0*D2D][k]/(psi[4]*psi[4]);
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>
cL[fl=(l 8.0*UL[3][fl-9.0*UL[2]D]+2.0*UL[l][j])/l 1.0;

}
for (j=0;J<N;j-H-)
{

cL[j]=cLD]-aL[fl[N]*Ui;
}
scaleJm_system(N-l, aL, cL);
method=l; iter=0; /*  Gauss-Seidel method
solve_equation(fpr, method, N -l, &iter, srelax, aL, cL, UL[4]);
}

} while ('.is converged); 
for 0=0; j<=N; j++)
{

UL[1]0*]=UL[2](j];
UL[2][j]=UL[3](j];
UL[3]0]=UL[4]D];
US[l][j]=US[2][fl;
US[2]D>USC3 ][fl;
US[3]0]=US[4][fl;

}
psi[l]=psi[2];
psi[2]=psi[3];
psi[3]=psi[4];
Dpsi[l]=Dpsi[2];
Dpsi(2]=Dpsi[3];
Dpsi[3]=Dpsi(4];
return;

void imtialize_kmetics(mt N, int n, FILE *frr, FTYPE x[M], FTYPE D1[M][M], 
FTYPE D2[M][M], FTYPE psi[M], FTYPE Dpsi[M], FTYPE UL[6][M], 
FTYPE US[6][M])

{
int j, k, approach;

for <j*0; j<=N; j++)
{

US[n][j]=US[n](j]*TS+Tm;
}
approach 1;
ex_meIting_AB_AMl(N, n, approach, x, D l, D2, US, fpr); 
for (j=0;j<=N;j++)
{
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US[n+l][j]=(US[n+l][fl-Tm)/TS; /* dimensionless*/
US[n](j]=(US[n][j]-Tm)/TS; /* dimensionless*/

}
UL[n+l][N]=US[n+l][0];
Dpsi[n+l]=KV*exp(4CG*Tm/(US[ttH][0]*TL+Tm)); /*  kinetics condition */ 
Dpsi[n+l]=Dpn[n+l]*(1.0-exp(-KH*US[ttH][0]*TS/Tm)); 
psi[nH]= psi[n]+dt*Dpsi[n+l]; /*  BDl step fo r psi */

I* assume linear profile in liquid which satisfies free sutface BC */
UL[n+l][0]=UL[n+I][N]+psi[n+l]; 
for (j=0; j<=N; j-H-)
{

UL[tt+l](j]=-0.5*psi[n+l]*(xa]-L0)+UL[tH-l][N];
}
return;

>

void TStep BDl(int N, int n, FTYPE relax, FILE *fpr, FTYPE x[M],
FTYPE Dl(Mj(M], FTYPE D2[M][M], FTYPE psi[M], FTYPE Dpsi[M],
FTYPE UL[6][M], FTYPE US[6][M])

{
int j, k, method, icount, iter, isjcooverged;
FTYPE aS[M][M], aL[M][M], cS[M], cL[M], delta, ps, Dps;
FTYPE belax, srelax;
if (n = 0 ) /* --------------- access */
{

for (k=0; k<=N; k++)
{

UL[0][k]=US[0][0];
}
psi[0]=0.0;
Dpsi[0]=1.0;

}
/♦ ---------- access end */

lrelax=relax;
srelax=relax;

/* -----------------------------------assuming */
Dpsi[n+-1 ]=Dpsi(n]; 
psi[n+l]=psi(n]+dt*Dpsi[n]; 
for(j=<);i<=N;j++)
{

UL[fH-I][i]=UL[n][j];
US[m-l][i]=US[n](j];

}
/* ------------------------------ assuming end */
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icount=0;
do
{

/* ---------------------------------------- organize matrix a(N + l,N + l) & c(N ±l) */
fcount++;
for (M ;j<N ; j - H - )

{
for (k=0; k<=N; k++)
{

if G =k) delta=1.0;
else delta=0.0;

aL[fl[k]=de!ta-dt*D 1 [j][k]*(x[j]+l.0)*Dpsi[rH-l]/psi[iH-l] 
-dt*4.0*D2[j][k]/(psi[n+l]*psi[n+l]); 

aS[j] (k]=deIta+dt*D 1 [j] [k] *(x[j]-1 .0)*Dpsi[itf-1 ]/(BB-psi(ttH ]) 
-dt*4.0*D2[j][k]/((BB-psi[n+l])*(BB-psi[n+l])*AA);

}
cLQ]=UL[n][fl;
cSD]=US[n]D];

}
for (k=0; k<=N; k++)
{

aL[0][k]=Dl[0][k];
}
cL[0]=-0.5*psi[n+l]; 
for (k=0; k<N; k++)
{

aL[N][k]=0.0;
aS[0][k+l]=0.0;

}
aL[N][N]=1.0;
aS[0][0]=1.0;
cL[N]=0.0;
cS[0]=0.0;
for (k=0; k<=N; k++)
{

aS[N][k]=CC*D 1 [N] [k]/((BB-psi[n+l ])• AA);
}
aS|N][N]==aS[N][N]+l .0; 
cS[N]=IS;
scak_lin_system(N, aL, cL); 
scale_lin_system(N, aS, cS);
method=l; iter=0; . /*  Gauss-Seidel method */
sotve_equatk>n(fpr, method, N, &iter, srelax, aL, cL, UL[itH]); 
solve_equation($r, method, N, &iter, srelax, aS, cS, US[n+l]);
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/*  feedback with eq(4) & eq(5) • / 
ps=psi[ttH];
Dps=Dpsi{n+l];
Dpsi[tt+l]=0.0; 
for (j=0; j<=N; j++)
{

Dpsi[tt+l]=Dpsi(tt+l]-2.0*Dl[N][j]*UL[n+l]0]/ps 
+2.0*D i [0]jj]*US [n+l][j]/((BB-ps)*AA);

}
psi[n+l ]=psi[n]+dt*Dpsi[n+l ];
is_converged = !( febs((ps-psi[tt+'l])/psi[tt+l])>=tolerancc

|| febs((Dps-E>psi[tt+l])/Dpsi[n-(-l])>=toIerance); 
if  (is converged)
{

if (lrelax < 1.0)
{

is.converged =  0 ; 
lrelax = 0.5 * lrelax + 0 .5 ; 
if(belax>0.9) 
lrelax = 1.0;

}
else if (srelax < 0.7)
{

isjconverged = 0 ; 
srelax = 0.5 * srelax+ 0 .35 ; 
if(srelax>0.7) 
srelax= 0 .7 ;

}
}

} while ( !is_converged && (icount < 200)); 
return;

}

void TStep_BD3(int N, FTYPE relax, FILE *fpr, FTYPE x[M], FTYPE D1[M][M], 
FTYPE D2[M][M], FTYPE psi(M], FTYPE DpsifM], FTYPE UL[6][M], 
FTYPE US[6][M])

{
int j, k, method, icount, her, isjconverged;
FTYPE aL[M](M], cL[M], aS[M][M], cS[M];
FTYPE delta, ps, Dps, sum, lrelax, srelax;
lrelax=relax;
srelax=relax;

/* ------------------------------ assuming */
Dpsi(4]=Dpsi(3];
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psi[4]=l8.0*psi[3]-9.0*psi[2]+2.0*psi[l]; 
psi[4]=(psi[4]+6.0*dt*Dpsi[4])/l 1.0;

for (j=0; j<=N; j++)
{

UL[4]D]=UL[3]D];
US[4]0]=US[3][fl;

}
/♦ ---------------------------assuming end */

icount=0;
do
{

/ * ---------------------------------------- organize matrix a(N+I,N+I) c(N+l) */
icount-H-;
for (j= l; j<N; j -H - )

{
for (k=0; k<=N; k++)

{
if(j= k ) delta—1.0;
else deka=0.0;
aL[j][k]=defta-(6.0/11.0)*dt*Dl[fl[k]*(x[n+1.0)*Dpsi[4]/psi[4] 

-(6.0/11.0)*dt*4.0*D20]Ik]/(psi[4]*psi[4]); 
aSD1M=deha+(6.O/lLO)*dt*Dl0][k]*(x[fl-l.O)*Dpsi[4]/(BB-psi[4]) 

-(6.0/11.0)*dt*4.0*D2[j][k]/((BB-psi[4])*(BB-psi[4])*AA);
}

cLtflK  18.0*UL[3][fl-9.0*UL[2][j]+2.0*UL[l][j])/l 1.0; 
cSQ]=(18.0*US[3]Q]-9.0*US[2][n+2.0*US[l][j])/11.0;
}
for (k=0; k<=N; k++)
{

aL[0]fk]=Dl[0][k];
}
cL[0]=-0.5*psi[4];

for (k=0; k<N; k++)
{

aL[N][k]=0.0;
aS[0][k+l]=0.0;

}
aL[N][N]= 10;
aS[0][0]=1.0;
cL[N]=0.0;
cS[0]=0.0;
for (k=0; k<=N; k++)
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{
aS[N][k]=CC*D 1 [N][k]/((BB-psi[4])*AA);

}
aS[N][N]=aS[N][N]+ i>0;
cS[N]=IS;
scale_lin_systeni(N, aL, cL); 
scale_lin_systeni(N, aS, cS);
method=l; iter=0; /♦  Gauss-Seidel method */
soivejequationCfpr, method, N, &iter, srelax, aL, cL, UL[4]); 
solve_equation(§)r, method, N, &iter, srelax, aS, cS, US[4]);

/ * ------------------------------------------------ feedback with eq(4) & eq(5) */
ps=psi[4];
Dps=Dpsi[4];

Dpsi[4]=0.0; 
for (j=0; j<=N; j++)
{

Dpsi[4]=Dpsi[4]-2.0*D 1 tN]D]*UL[4][fl/ps 
+2.0*D 1 [0][j]*US[4][j]/((BB-ps)*AA);

}
psi[4]=l8.0*psi(3]-9.0*psi[2]+2.0*psi[l]; 
psi[4]=(psi[4]+6.0*dt*Dpsi[4])/l 1.0;

is converged * ! (  febs((ps-psi[4])/psi[4])>=toIerance
|| fabs((Dps-Dpsi[4])/Dpsi[4])>=to lerance ) ;  

if (isjconverged)
{

if (lrelax < 1.0)
{
isjconverged = 0 ; 
lrelax = 0.5 * lrelax+ 0.5; 

if (lrelax >0.9) 
lrelax = 1.0;

}
else if (srelax < 0.7)
{

isjconverged = 0 ; 
srelax*0 .5  * srelax + 0.35; 
if(srelax>0.7) 
srelax = 0 .7 ;

}
}

} while ( (isjconverged && (Icount < 200)); 
for (j=0; j<ssN; j++)
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{
UL[1]D]=UL[2]D1;
UL[2]D]=UL[3][j];
UL[3][fl=UL[4][fl;
US[l]D]=US[2][j];
US[2]Q]=US[3](j];
US[3]D]=US[4]D];

}
psi[l]=psi[2];
psi[2]=psi[3];
psi[3]=psi[4];
Dpsi[l]=Dpsi[2];
Dpsi[2]=Dpsi[3];
Dpsi[3]=Dpsi[4];
return;

}

void end_melt(int N, int n, FTYPE x|M j, FTYPE psi(M], FTYPE Dpsi[M],
FTYPE UL[6][M], FTYPE US[6][M], FILE *fpr)

{
in t j ;
FTYPE ratio, endmelt;

ratk>==(Tro-US[2][N])/(US[3][N]-US[2][N]);
endmeh=(n-l)*dt+dt*ratio;
for G=0;j<=N;j-H-)
{

US[2][j]=US[l]0]+(US[2]0]-US[l]D])*ratio;
}
fprinti(Q>r, "\n\n-------------------------------------------- U(%<U)\n", n);
fprintf(f[>r, "Time = %14.6e s\n", time_melt*TIME);
$rintf(i[>r, "CoL Space o f z (mm) Temperature\n\n");
for(r=0;j<=N ;jf+)
{

fprintf(fpr, "%2d, %11.4e %14.6e\n",
j, (x[fl+1.0)*length*1000.0/2.0, US[2][fl);

}
for (j=0;j<=N;j-H-)
{

US[0][j]=(US[2][j]-Tm)/TS; * the initial cond. o f 2-phase problem *
}
return;

}
/* done done done done done done done done done done done done done done done */
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